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PROJECT ABSTRACT 

Most currently used methods for design flood estimation (DFE) in South Africa, required to 

design hydraulic structures, were developed over 50 years ago and need updating. Standard 

methods for frequency analysis of extreme events are based on the assumption of a stationary 

climate. However, this has been challenged due to evidence of a changing climate. This project 

focussed on the development of toolbox for estimating design rainfalls and floods under non-

stationary conditions. The main aims were to investigate trends in rainfall and streamflow data 

and to investigate potential non-stationarity in the data. The East coast of KwaZulu-Natal was 

selected for this study based on data availability and accessibility. Results of a trend analysis 

of annual maximum daily rainfall from 39 observational stations in KwaZulu-Natal showed 

weak evidence that the annual maximum daily rainfalls have been increasing in magnitude over 

time. Several non-stationary models, using time and various climate drivers as covariates were 

developed, and compared to the standard stationary models. Most rainfall records indicate that 

a stationary behaviour is dominant.  Changes in atmospheric CO2 concentrations explain the 

largest proportion of changes in the rainfall data relative to other covariates considered in the 

study. The projected changes in rainfall were analysed using Global Circulation Models 

(GCMs) to derive possible climate change factors or ratios that could be applied to current 

design rainfall depths to design for future scenarios. Projected results from this project showed 

design rainfalls to remain relatively stable compared to present into the near future, with 

increases of approximately 10%. Projected changes into the distant future show a 10 – 30% 

increase in design rainfalls in many locations. Results of the trend analysis of the annual 

maximum streamflow from 19 stations in KwaZulu-Natal indicate that the annual maximum 

streamflow has been decreasing in magnitude and frequency at the majority of stations. 

Extreme value analysis was performed using both stationary and non-stationary models using 

time and rainfall as covariates. Similar to rainfall, the results  for the study area show that the 

stationary models are superior to non-stationary models at most stations with time as a 

covariate, however, the non-stationary model incorporating observed rainfall as a covariate 

performed better than the stationary model as well as the non-stationary model with only time 

as a covariate. These results may differ elsewhere in the country, thus similar analyses in 

different climatic zones are recommended for further research. 
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EXECUTIVE SUMMARY 

Introduction  

Standard methods for frequency analysis of extreme rainfall and flood events assume a 

stationary climate, i.e., the statistics of the data do not change over time. However, the reported 

increase in the occurrence of extreme rainfalls leading to catastrophic flood events has raised 

the questions of whether changes in the magnitude and frequency of observed extreme rainfall 

events are already evident in South Africa, what the drivers of these changes are, and what the 

potential impacts on design rainfall estimation and consequently on flood risk assessment could 

be for in South Africa. Accurate estimations of design floods are required to limit the risk to 

loss of life and failure of, or over expenditure on, hydraulic structures. The needs to develop 

methods to account for non-stationary data, and to update design rainfall estimation methods 

to include possible trends in extreme rainfall events in a changing environment, have been 

identified as high priority research areas in the National Flood Studies Programme (NFSP) 

(Smithers et al., 2016). The damage and loss of life caused by recent (2022) flooding across 

KwaZulu-Natal, and the realisation of possible increased rainfall variability in the future, 

highlight the fact that Design Flood Estimation (DFE) techniques currently used in South 

Africa are outdated and need revision.  

 

The impact of a changing climate has become a key concern in South Africa, where 

temperatures shown a greater increase compared to observed global averages (Ziervogel et al., 

2014), and the highest recorded temperatures have been documented in recent years (Moyo 

and Nyoni, 2021). Generally, heavy rainfalls are related to warmer atmospheric conditions. 

McBride et al. (2022) noted that the probability of significant extreme daily rainfall events 

occurring has increased for most parts of South Africa. Many observations of global climate 

trends have raised an increasing concern that the extreme rainfalls, including the Probable 

Maximum Precipitation (PMP) needed for the design of high-hazard hydraulic infrastructure, 

will change as a result of the influence of a changing climate (Rouhani, 2016). Johnson and 

Smithers (2020) revised the 1-day PMPs in South Africa using an updated rainfall database 

and a modernized methodology and highlighted that many of the extreme events noted in their 

study occurred after the previously estimated PMPs were published in HRU (1972). Hence, it 

is critical to update PMP estimates currnetly used in industry, which were derived on the 
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assumption of stationary data, and use this information to estimate the potential impacts of the 

changing climate on extreme rainfall estimation. 

 

Internationally, numerous research institutions are investigating non-stationarity in flooding 

using modelled future climate data. With the increasing availability of climate model data 

through Global Circulation Models (GCMs), there is greater opportunity to use such data to 

determine the potential impacts of future climate scenarios on extreme rainfall and flood events 

using advanced statistical techniques, and to develop methods/tools to incorporate these trends 

in design rainfall and flood estimation. 

 

Given the importance of flood risk management, the shortcomings of the methods currently 

used by practitioners for DFE and the potential impact of climate change, dealing with a non-

stationary climate data series currently requires urgent attention in South Africa (Johnson et 

al., 2021). A method to account for non-stationary data which incorporates the impacts of a 

changing climate in extreme design rainfall estimates in South Africa needs to be developed 

using regional approaches to detect trends in historical data.  

 

Aims of the Project 

 

Given the background provided above, the aims of this project are therefore to undertake the 

following for South Africa: 

(a) To develop and assess the performance of a method to account for the impacts of non-

stationary data on design rainfall estimation; 

(b) To review and refine the updated 1-day PMP estimates; 

(c) To develop and assess the performance of a method to account for the impacts of non-

stationary data on PMP estimation; and 

(d) To assess the trends in hydrological extremes using regional magnification factors. 

 

Objectives (b) and (c) regarding the PMP were addressed through a report on the update of the 

1-day PMP, which was submitted to WRC in February 2023, and a workshop on the use of the 

revised PMP tools, which was held at Stellenbosch University and online in May 2023.  
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The outputs of these two deliverables are accessible via the Water Research Observatory 

website, which is a cloud-based data portal belonging to the Water Research Commission. This 

final report focusses on assessing trends in hydrological extremes and evaluating the potential 

impacts of non-stationary data on design rainfall estimation in KwaZulu-Natal (KZN). 

 

Aim (a): Non-stationary Frequency Analysis of Extreme Rainfall Events on the East 

Coast of KwaZulu-Natal 

 

Extreme flood events can damage hydrological structures such as dam walls, spillways, 

bridges, and culverts. Therefore, minimising the risk of failure of hydraulic structures requires 

design floods be estimated accurately. The underestimation of design floods and failure of 

hydraulic structures can lead to loss of life and significant economic losses, while 

overestimation may result in over-design which results in excessive construction and 

maintenance costs. Recent large floods include the events in 2019 and 2022 experienced along 

the eastern coast of South Africa and have been reported to have resulted in infrastructural 

damages of billions of Rands, with thousands of people affected (Singh, 2019; Pinto et al; 

2022). 

 

Traditional methods for frequency analysis of extreme events and most current risk assessment 

models are based on techniques and concepts developed nearly a century ago (e.g. Fuller, 1914) 

and are based  on the assumption of climate stationarity. However, anthropogenically induced 

climate change has resulted in changes in extreme weather events, thus questioning the 

assumption of stationarity (e.g. Vasiliades et al., 2015; Zhou et al., 2016; Demaria et al., 2017; 

Tan and Gan, 2017; Gao and Zheng, 2018; Ragno et al., 2019a; Ouarda et al., 2020; Song et 

al., 2020; Hesarkazzazi et al., 2021; Silva et al., 2021). In recent years, the frequency and 

impacts of extremes have increased substantially in many parts of South Africa (Thoithi et al., 

2023). Hence, there is significant interest in understanding how extreme events may change 

into the future and how frequency analyses should be adapted to account for non-stationary 

data. 

 

Aim (a) of the study, undertaken as a pilot study on the the East Coast of KwaZulu-Natal, is to 

determine if any trends exist in observed extreme rainfall events in order to contribute to an 
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understanding of the teleconnection patterns between various climate drivers and the annual 

maximum daily extreme rainfall and to account for possible non-stationary climate data in the 

estimation of extreme design rainfall events in South Africa. The objectives of this component 

of the study were to: (i) investigate trends in annual maximum daily rainfall using parametric 

and non-parametric statistical tests, (ii) identify potential climate drivers of extreme rainfalls, 

(iii) perform stationary and non-stationary rainfall frequency analyses, (iv) critically evaluate 

the stationary vs non-stationary models, and (v) evaluate projected changes in rainfall using 

GCMs. 

 

In terms of rainfall data analyses undertaken in this study, the annual maximum daily rainfall 

from 39 observational stations in KwaZulu-Natal, located along the east coast of South Africa, 

were analysed. The existence of temporal trends in the data series were investigated using non-

parametric tests. The results indicate weak evidence that the annual maximum daily rainfalls 

have been increasing in magnitude over time. The trends detected varied across the sites, with 

approximately 40 % of sites showing a positive trend, only one of which showed a statistically 

significant increasing trend. Non-stationary extreme value statistical analysis was used to 

explore the utility of rainfall relationships in KZN with various potential climate drivers to 

predict possible future impacts on extreme rainfall. Several non-stationary models, using time 

and various climate drivers as covariates (Southern Oscillation Index, Dipole Mode Index, CO2 

and Global Mean Temperature), were developed, and compared to the standard stationary 

models. Most rainfall records indicate that a stationary behaviour is dominant. The variability 

of the results of the trend and non-stationary analyses highlights the importance of 

understanding the trends and drivers of extreme rainfalls and the impacts on design rainfall and 

design flood estimation. To improve the study, the use of other physical covariates, as well as 

combinations of covariates, should be explored. 

 

Changes in atmospheric CO2 explain the largest proportion of variability in the rainfall data 

relative to other covariates considered in the study. The projected changes in rainfall were 

analysed using Global Circulation Models (GCMs) to derive possible climate change factors, 

or ratios, that could be applied to current design rainfall depths to design for future scenarios. 

The ratios of changes from the present to the near future climate periods, and from the present 

to the distant future climate periods for design rainfall were derived. Design rainfalls are 
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projected to remain stable into the near future compared to the present, with increases of 

approximately 10%, and ratios increasing with an increase in return period. Projected changes 

into the distant future show a 10 – 30% increase in design rainfalls in many locations in the 

study area. These results could vary elsewhere in the country. It is recpommended that the use 

of projected trends in rainfalls from GCMs should be informed by the considerations based on 

the observed rainfall data trends. 

 

Aim (d): Detecting Trends in Hydrological Extremes and Non-Stationary Extreme Value 

Analysis of Flood Data in KwaZulu-Natal 

 

As with rainfall analysis, the current methods and models used to determine design flood 

estimates from flow data assume that hydrological processes and upstream land uses as well as 

river and dam abstractions remain stationary (Vogel et al., 2011). However, the magnitude and 

frequency of extreme flood events is changing in many parts of the world (Vogel et al., 2011; 

Prosdocimi et al., 2014a; Hesarkazzazi et al., 2021). Therefore, there is a need to investigate, 

and incorporate if necessary, non-stationary models in DFE in South Africa.  

 

This section includes an analysis of trends in  extreme floods along the East Coast of KwaZulu-

Natal in South Africa. This study site was selected to complement and correspond to the rainfall 

analyses. The aims of this component of the study were to determine if any trends exist in 

observed extreme flood events on the East Coast of KwaZulu-Natal, and to evaluate the 

possible non-stationarity in observed flow data. The objectives were to: (i) collect, screen, and 

analyse streamflow data for trends, (ii) perform stationary and non-stationary flood frequency 

analyses, (iii) critically evaluate the stationary vs non-stationary models, and (iv) investigate 

regional magnification factors to detect trends. 

 

The annual maximum streamflows from 19 stations in KwaZulu-Natal, along the East Coast 

of South Africa, were analysed. Non-parametric trends were investigated, and the results 

indicate that the annual maximum streamflow has been decreasing in magnitude and frequency 

in the majority of stations. Extreme value analysis was performed using both stationary and 

non-stationary models using time and rainfall as covariates. Similar to rainfall, the results show 

that the stationary models are superior to non-stationary models at most stations with time as a 
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covariate. Where possible, streamflow stations were linked with rainfall stations to determine 

the impact of rainfall on annual maximum streamflow. The results indicate that the non-

stationary model incorporating observed rainfall as a covariate performed better than the 

stationary model as well as the non-stationary model with only time as a covariate. Therefore, 

incorporation of rainfall in DFE should be considered to account for non-stationary trends and 

to mitigate the risk of failure of hydraulic structures. Regional magnification  factors to account 

for non-stationarity were thus not investigated further in this study as the majority of the 

stations showed a negative trend, which means application of a regional magnification factor 

would result in a reduction of the magnitude of the estimated design floods.  

 

Conclusions  

The outcomes presented in this report are sometimes contrary to the outputs from GCMs 

reported in international studies and to reported increases in extreme events in South Africa. 

These results may differ elsewhere in the country and this study has highlighted the need to 

investigate trends and non-stationarity in other parts of the country located in different climate 

zones and with up-to-date datasets. Further analysis of data for various event durations (e.g. 

sub-daily or multi-day events) are recommended. Given the generally weak positive trends in 

rainfall data and negative trends in the annual maximum flow data, alternative more detailed 

analysis methods, such as the peak over threshold approach, are recommended for future 

research.  

 

Capacity Building Report 

 

This project has contributed to the support for two postgraduate students. Of these, one student 

has submitted a PhD thesis for examination, and one student has made progress towards his 

PhD research. In addition, the project leader is an early career researcher who has gained 

experience leading this project. This research has been shared at local and international 

conferences and has been presented at the annual NFSP workshops, attended by practitioners, 

stakeholders, and researchers. 
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1. INTRODUCTION 
 

Estimates of extreme design rainfall are needed routinely for Design Flood Estimation (DFE) 

to design and assess the flood risk of hydraulic structures such as dam spillways, culverts and 

stormwater drains. Standard methods for frequency analysis of extreme events are based on the 

assumption of a stationary climate (Prosdocimi et al., 2014b), i.e. that the long-term attributes 

of climate do not change over time. However, it is postulated that anthropogenically induced 

climate change has resulted in changes in extreme weather events, thus questioning the 

assumption of stationarity (Serinaldi and Kilsby, 2015). As a consequence of a projected 

changing climate, the frequency and magnitude of extreme rainfall events is expected to 

increase in the future (Bates et al., 2008), thus further exacerbating flood risk exposure of 

already vulnerable communities and hydraulic infrastructure. The possible non-stationarity in 

climate is projected to result in changes in rainfall and runoff characteristics, with potential 

impacts on the accuracy of current estimates of design rainfall and on the estimation of extreme 

rainfall quantities such as the Probable Maximum Precipitation (PMP). This may have 

significant consequences for the flood risk profiles of existing hydraulic infrastructure and on 

the design of new hydraulic infrastructure, and consequently also for the South African 

economy (Cullis et al., 2015). It is therefore essential to account for possible trends and 

associated uncertainties associated with non-stationary climate data in the analysis of extreme 

rainfall events (Yilmaz et al., 2014) in support of more reliable design of critical infrastructure 

and credible flood management interventions.  

 

The damage and loss of life caused by recent (2022) flooding across the East Coast regions of 

KwaZulu-Natal, and the realisation of possible increased rainfall variability in the future, 

highlight the fact that DFE techniques currently used South Africa are outdated and need 

revision. As a consequence, a National Flood Studies Programme (NFSP) has been initiated to 

overhaul and modernise DFE procedures used in South Africa (Smithers et al., 2016). The 

NFSP is a comprehensive plan covering all approaches to DFE, which includes updating and 

modernisations of the estimation of design rainfalls and floods under non-stationary climate 

conditions in South Africa. The need to develop methods to account for non-stationary data, 

and to update design rainfall estimation methods to include possible trends in extreme rainfall 
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events in a changing environment, have been identified as high priority research areas in the 

NFSP. 

 

The impact of a changing climate has become a key concern in South Africa (e.g. Department 

of Environmental Affairs, 2014a; Department of Environmental Affairs, 2014b; Department of 

Environmental Affairs, 2017). In South Africa, over the past five decades the mean annual 

temperatures have increased by more than 1.5 times the observed global average increase 

(Ziervogel et al., 2014). The Department of Environmental Affairs (2017) noted that the 

highest recorded temperatures up to that year since 1951 occurred in 2015. Moyo and Nyoni 

(2021) noted that South Africa is likely to be at least 3oC warmer by 2050 than the period from 

1961-2000 under a “business-as-usual” scenario in greenhouse gas emissions. The 

Intergovernmental Panel on Climate Change (IPCC) note that severe and widespread impacts 

associated with such temperature increases are attributable to climate change (IPCC, 2018). 

Changes in temperature have a significant impact on extreme weather events (Pfahl et al., 2017; 

IPCC, 2018) and, generally, warmer atmospheric conditions are more conducive to heavy 

rainfall events (IPCC, 2017a; Pfahl et al., 2017). Over parts of South Africa, it has been noted 

that the frequency of extreme rainfall events has increased (Ziervogel et al. (2014).  

 

The estimation of design floods is impacted by changes in rainfall and runoff distribution 

characteristics (Smithers, 2012b). Many observations of global climate trends have raised an 

increasing concern that the extreme rainfalls, including the PMP, needed for the design of high-

hazard hydraulic infrastructure, will change due to the influence of a changing climate 

(Rouhani, 2016). The potential influences of climate change on key variables for PMP 

estimation, such as maximum moisture and precipitation efficiency, have been studied in some 

detail (Clark, 1987; Rastogi et al., 2017). Results of that research suggest that changes in both 

atmospheric temperature and the maximum atmospheric moisture that can be held may increase 

PMP estimates by approximately 20% due to climate change (Clark, 1987; Rastogi et al., 

2017). 

 

Johnson and Smithers (2020) revised the 1-day PMPs in South Africa using an updated rainfall 

database and a modernized methodology and highlighted that many of the extreme events noted 
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in their study occurred after the previously estimated PMPs published in HRU (1972). This 

indicates that there has been an increase in extreme rainfall events recorded compared to 

previous years. Hence it is critical to publish the updated PMP estimates, derived on the 

assumption of stationary data, and use this information to estimate the potential impacts of the 

changing climate on extreme rainfall estimation. 

 

Dam safety management has conventionally been carried out assuming stationary climatic 

conditions (Ehsani et al., 2017). However, researchers are increasingly taking the non-

stationarity hypothesis in rainfall and flood frequency analysis into account to cater for the 

effects of climate change (Gregersen et al., 2017; Sarhadi and Soulis, 2017; Fluixá-Sanmartín 

et al., 2019; Pedretti and Irannezhad, 2019; Hesarkazzazi et al., 2021).  Moyo and Nyoni (2021) 

warn that most climate change scenarios for South Africa show potential detrimental impacts 

on dams and flood risk management. Warmer and drier climate is linked to increased risk of 

droughts which adversely impact on the reliability of water supply systems and the structural 

integrity of dams. Warmer and wetter scenarios are characterized by more frequent and severe 

extreme flood events which are directly linked to dam safety concerns as well as to increased 

sedimentation. Ultimately, any climate change scenario is highly likely to have an adverse 

impact on dam safety and flood risk management. Luxford and Faulkner (2020) recommend 

the development of a practical method of non-stationary flood frequency estimation in the UK, 

that includes investigating trends in extreme rainfall and incorporating non-stationarity and 

integrates the modelling of past trends and future expected climate change. 

 

The importance of this research has recently been highlighted by the Water Research 

Commission (WRC) through a Webinar titled “Roadshow: Advancing Dam Safety in The 

Context of Climate Change in South Africa” held in May 2021. Dams are strategic assets for 

storing water to support life and socio-economic development. Their failure often results in the 

loss of life, extensive downstream damage to the environment and impacts on economic 

activities. In South Africa the Dam Safety Office, located within the Department of Water and 

Sanitation (DWS), is responsible for ensuring the safety of dams. In addition to normal ageing-

related deterioration of dams, their safety is likely threatened by climate change. According to 

the erstwhile Department of Environmental Affairs (now DEFF), the biggest cost increase 
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associated with climate change in the water sector will be in infrastructure damage due to 

flooding, projected to rise from about R670 million per year to R3.5 billion per year (WRC, 

2021). 

 

Given the importance of flood risk management, the shortcomings of the methods currently 

used by practitioners for DFE and the potential impact of climate change, dealing with a non-

stationary climate data series currently requires urgent attention in South Africa (Johnson et 

al., 2021). Hattingh (2021) noted that to address the challenge of climate change and its impacts 

on dams, risk-based approaches need to be developed to account for uncertainty associated 

with a non-stationary climate, further highlighting the importance of this research in the South 

African context. With the increasing availability of climate model data through Global 

Circulation Models (GCMs), there is greater opportunity to use such data to determine the 

potential impacts of future climate scenarios on extreme rainfall and flood events using 

advanced statistical techniques, and to develop methods/tools to incorporate these trends in 

design rainfall and flood estimation. For example, numerous research institutions in the UK 

are involved in research on non-stationarity in flooding using climate model data (Luxford and 

Faulkner, 2020). 

 

All DFE methods currently used in South Africa are based on the assumption of a stationary 

climate. The concept of regionally derived “magnification” adjustment factor to account for 

non-stationarity is a convenient method for linking trends due to  non-stationary frequency 

analysis to estimates from methods based on the assumption of stationarity, as well as providing 

an intuitive means of communicating the effects of change on design floods. While many of 

the climate modelling studies reported in the literature indicate changes in the frequency and 

magnitude of extreme flood events, there does not seem to be consensus in the literature on the 

detection of trends in the observed data. This disparity could be attributed to the relatively short 

periods of observations available. Kjeldsen and Prosdocimi (2021a) presented a regional 

approach to magnification factors to allow a statistical assessment of the impact of non-

stationary data on design floods in both gauged and ungauged locations, regardless of the 

causes (e.g. climate change, increased abstractions, changes in land cover) of non-stationary 

data. This approach can be used to allow more robust assessment of trends in regional series of 
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hydrological extremes and changes in design rainfalls and floods across a specified region or 

pooling group in South Africa. 

 

Given the above, a method to account for non-stationary data which incorporates the impacts 

of a changing climate in extreme design rainfall estimates in South Africa needs to be 

developed using regional approaches to detect trends in historical data.  

 

Given the background provided above, the aims of this project are therefore to undertake the 

following for South Africa: 

(a) To develop and assess the performance of a method to account for the impacts of non-

stationary data on design rainfall estimation; 

(b) To review and refine the updated 1-day PMP estimates; 

(c) To develop and assess the performance of a method to account for the impacts of non-

stationary data on PMP estimation; and 

(d) To assess the trends in hydrological extremes using regional magnification factors. 

 

Objectives regarding the PMP were addressed through Deliverable 3, a report on the update of 

the 1-day PMP which was submitted to WRC in February 2023, and Deliverable 4, a workshop 

on the use of the revised PMP tools which was held at Stellenbosch University and online in 

May 2023.  The outputs of these two deliverables are accessible via the Water Research 

Observatory website, which is a cloud-based data portal belonging to the Water Research 

Commission. This report focusses on assessing trends in hydrological extremes and the impacts 

of possible non-stationary data on design rainfall estimation in KwaZulu-Natal. 

 

The structure of this document is as follows: 

Detecting trends in rainfall extremes and non-stationary extreme value analysis of rainfall data 

in KwaZulu-Natal are presented in Chapter 2 and detecting trends in flood extremes and non-

stationary extreme value analysis of peak discharge data is covered in Chapter 3. Chapter 4 

contains discussion and conclusions on this study. Chapter 5 presents a summary of the 

capacity building through the project. Chapter 6 lists the references used and Chapters 7 and 8 

contain the appendices.  
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2. NON-STATIONARY FREQUENCY ANALYSIS OF EXTREME 

RAINFALL EVENTS ON THE EAST COAST OF KWAZULU-NATAL 
KA Johnson, JC Smithers, RE Schulze, TR Kjeldsen and S Schütte  

 

2.1 Introduction 

 

Extreme hydrological events such as floods are one of the deadliest hazards in South Africa 

(Pinto et al., 2022). Extreme floods events can damage hydrological structures such as dams, 

spillways, bridges and culverts. Therefore, minimising the risk of failure of hydraulic structures 

requires design floods be accurately estimated. The underestimation of design floods and 

failure of hydraulic structures can lead to loss of life and significant economic losses, while 

overestimation may result in over-design which results in excessive construction and 

maintenance costs. The trade-off between safety and costs is a delicate balancing act, especially 

for emerging economies with public budgets under pressure from competing demands. The 

South African Government has reported that the most common weather-related catastrophes in 

South Africa between the period 1900 to 2014 were floods, droughts and large storms (DFFE, 

2016). Recent large floods include the event on the April 2022 experienced along the eastern 

coast of South Africa which was reported to have resulted in infrastructural damages to the 

value of 17 billion Rands and 435 casualties, 55 injured, and 54 people missing (Pinto et al., 

2022). Similarly, for an event in the same region in April 2019, Singh (2019) reported 650 

million Rands damages to infrastructure and 60 deaths. These reported losses highlight the 

critical importance of flood management in the region and the absolute need for risk analysis 

to be supported by the best available information, data and methods. This is particularly 

important as the magnitude and frequency of extreme weather events is expected to increase 

over time, combined with an increase in social vulnerability resulting from growing 

populations and associated economic activity. 

 

Traditional methods for frequency analysis of extreme events and most current risk assessment 

models are based on techniques and concepts developed around a century ago (e.g. Fuller, 

1914) and are based  on the assumption of climate stationarity, i.e. that no temporal change is 
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evident in the statistics of extreme events (Prosdocimi et al., 2014; Ragno et al., 2019b). 

However, anthropogenically induced climate change has resulted in changes in extreme 

weather events, thus questioning the assumption of stationarity (Serinaldi and Kilsby, 2015). 

In recent years, the frequency and impacts of extremes have increased substantially in many 

parts of South Africa (Thoithi et al., 2023). Hence, there is significant interest in understanding 

how extreme events may change into the future and how frequency analyses should be adapted 

to account for non-stationary data. 

 

Statistical models used to analyse extreme events can be broadly categorised into two groups: 

stationary and non-stationary. In a stationary model, the observations are assumed to be drawn 

from a static/non-varying probability distribution function, which is assumed to represent the 

entire population of data, with constant parameters. Hence, the statistics of extreme events are 

assumed to not change over time or with respect to another variable or covariate. However, in 

a non-stationary model, the parameters of the underlying probability distribution function 

change over time or due to a selected covariate (Sadegh et al., 2015). Several studies have 

promoted the idea of moving away from stationary models to ensure that the changing 

properties of extreme hydrological events are captured and accounted for in design estimates 

(e.g. Vasiliades et al., 2015; Zhou et al., 2016; Demaria et al., 2017; Tan and Gan, 2017; Gao 

and Zheng, 2018; Ragno et al., 2019a; Ouarda et al., 2020; Song et al., 2020; Hesarkazzazi et 

al., 2021; Silva et al., 2021). 

 

Moyo and Nyoni (2021) warned that most climate change scenarios in South Africa show 

detrimental impacts on dams and flood risk management. Warmer and drier climate is linked 

to increased risk of droughts which adversely impact on the reliability of water supply systems 

and the structural integrity of dams. Warmer and wetter scenarios are characterised by more 

frequent and severe extreme flood events which are directly linked to dam safety concerns as 

well as to increased sedimentation. McBride et al. (2022) noted that, despite the total number 

of observed rain days having remained relatively constant over the past century, the probability 

of significant extreme daily rainfall events occurring has increased for most parts of South 

Africa.  Ultimately, many climate change scenarios are highly likely to have an adverse impact 

on dam safety and flood risk management. The impacts of climate change can be modelled 
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using outputs from GCMs. These models can be used at a global scale or can be downscaled, 

and bias corrected for application at local scales. 

 

Given the importance of water resources and flood risk management, the potential impact of 

climate change on the magnitude and frequency of extreme events requires urgent attention in 

South Africa to ensure that the best possible science is supporting operational hydrological 

decision-making and risk assessments (Smithers et al., 2014; Johnson et al., 2021). This 

urgency is supported by Hattingh (2021), who highlighted the need to address the challenge of 

climate change and its impacts on dams, including risk-based approaches, in order to account 

for uncertainty associated with a non-stationary climate, with this further highlighting the 

importance of this research in the South African context.  

The aims of the study reported in this chapter are to determine if any trends exist in observed 

extreme rainfall events along the East Coast of KwaZulu-Natal, to contribute an understanding 

of the teleconnection patterns between various climate drivers and the annual maximum daily 

extreme rainfall and to account for possible non-stationarity in climate data in the estimation 

of extreme design rainfall events in South Africa. The objectives of this chapter are to: (i) 

investigate trends in annual maximum daily rainfall using parametric and non-parametric 

statistical tests, (ii) identify potential climate drivers of extreme rainfalls, (iii) perform 

stationary and non-stationary rainfall frequency analyses, (iv) critically evaluate the stationary 

vs non-stationary models, and (v) evaluate projected changes in rainfall using GCMs. 

 

2.2 Materials and Methods 

 

2.2.1 Data sources and case study site selection  

 

Given the lack of access to concurrent and up-to-date rainfall data at a national scale from the 

South  African Weather Services (SAWS), the east coast of KwaZulu-Natal (KZN) in South 

Africa was selected for a case study to investigate how extreme rainfalls may have changed 

over time, as data were available for this region. Daily rainfall data were obtained from the 

South African Sugarcane Research Institute (SASRI), which provides open access to up-to-
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date climate data over the sugarcane production region within South Africa. Approximately 

100 stations with rainfall data up to the year 2020 were extracted from the SASRI database. 

The rainfall data were screened according to the following criteria: 

a) the record length must be at least 40 years, 

b) the record should be the most up-to-date, and 

c) no more than three months of data should be missing. 

 

The daily rainfall time series from each site was checked for missing data. To construct a time 

series of the Annual Maximum Daily Rainfall (AMDR) it is important that each year of the 

records be sufficiently complete so that the largest rainfall totals are likely to have been 

captured and to prevent seasonal bias. Based on the selection criteria, 39 sites were selected for 

this study. Figure 2.1 depicts the SASRI station numbers and locations of the stations used in 

the study and Table 2.1 contains a summary of the station information. 

 
Figure 2.1 SASRI stations in KwaZulu-Natal selected for this study 
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Table 2.1 Station information for case study sites 

Station Name 
SASRI 
Station 

Number 
Altitude  

(m) 
Start 
Year 

End  
Year 

Total  
Years 

Pongola – SASRI 6 308 1966 2014 48 
Glen Park − St Lucia Farms 8 35 1966 2020 54 
Mtubatuba – Riverview 
Sugar Mill 9 46 1966 2020 54 
Mtunzini – ex SASRI 11 36 1966 2020 54 
Melmoth – CA Leith & Sons 12 790 1967 2020 53 
Glendale – Tenrith Farm 18 129 1966 2020 54 
Tongaat – Klipfontein (THS) 20 72 1965 2020 55 
Seven Oaks – Saw Mill 22 1067 1966 2020 54 
Noodsberg – Illovo Sugar 
Mill 23 1008 1971 2020 49 
Illovo – Sugar Estate 26 15 1966 2020 54 
Vulamehlo – Esperanza 27 195 1968 2015 47 
Mt Edgecombe – SASRI 29 96 1927 2020 93 
Sezela – Illovo Sugar Estate 38 90 1976 2020 44 
Oribi Flats - Minnehaha 
Farm 105 520 1965 2020 55 
Renishaw – Crooks Bros 
Estate 110 61 1957 2020 63 
Powerscourt – Roseleigh 
Estate 111 637 1957 2020 63 
Inanda – Farm 114 556 1957 2020 63 
Inyaninga – THS 120 107 1957 2019 62 
Maidstone – Sugar Mill 
(THS) 123 46 1957 2020 63 
Sinembe – Spreyton Farm 125 237 1957 2020 63 
Upper Tongaat – Barwon 
Farm 126 457 1957 2020 63 
Kearsney – Ocean Lodge 129 277 1957 2020 63 
Doornkop – Langespruit 
Farm 130 545 1957 2020 63 
Darnall – Sugar Mill (THS) 131 142 1957 2020 63 
Tugela Mouth – Wetherly 
Estate 132 114 1957 2015 58 
Glenside – Misty Krantz 
Estate 136 997 1974 2017 43 
Mandini – SAWS 138 99 1957 2020 63 
Inyoni – Myrln Estate 139 107 1957 2020 63 
Eshowe – Brocklee Farm 142 549 1957 2020 63 
Nkwaleni – Zigagazi 143 137 1957 2019 62 
Felixton – Sugar Mill (THS) 144 46 1957 2020 63 
Kulu Halt - Honey Farm 146 61 1957 2020 63 
Ukulu Properties – Crystal 
Holdings 147 152 1957 2020 63 
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Station Name 
SASRI 
Station 

Number 
Altitude  

(m) 
Start 
Year 

End  
Year 

Total  
Years 

Mposa – Redcroft Farm 148 91 1957 2020 63 
Kwambonambi – Mondi 
Forestry 149 30 1957 2020 63 
ULOA – Mark & Ross Sugar 
Estate 151 15 1957 2015 58 
Mtubatuba – Nyalazi River 152 34 1957 2015 58 
Mkuze – Mkuze Estate 154 150 1957 2020 63 
Pongola – Impala Irrigation 
Board 155 290 1957 2020 63 

 

2.2.2 Methodology  

 

The basic methodology applied in this study to determine extreme rainfall quantities at a given 

location, and how they may vary with respect to a selected covariate, is detailed in the following 

sections. The main steps involved in this approach are summarised in Figure 2.2.  
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Figure 2.2 Stationary and non-stationary design rainfall estimation procedures  

2.2.2.1 Trends in rainfall extremes  

 

The existence or not of trends in hydrological extremes can be investigated using parametric 

or non-parametric methods. Parametric methods include using simple linear regression to 

investigate how annual maximum rainfall changes over time. However, this method can only 

be used on data that are normally distributed (Kundzewicz, 2019). The Mann-Kendall Test, 

MKT, (Mann, 1945; Kendall, 1962) is a non-parametric test often used to detect trends in 
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hydrological extremes (Cheng et al., 2014; Yilmaz and Perera, 2015; Agilan and Umamahesh, 

2018; Ragno et al., 2019a; Hesarkazzazi et al., 2021). The term ‘non-parametric’ refers to the 

absence of assumptions about the distribution of the data  in the method (Mathivha et al., 2021). 

The MKT does not provide information on the magnitude of a trend, it only provides details 

about the existence, significance, and direction of a trend (Mangini et al., 2018). In addition, 

the Sen’s slope is a non-parametric method used to evaluate the linear trend of the data series 

(Sen, 1968). Hence, the MKT and Sen’s slope were selected to detect trends in the AMDR 

data.  

2.2.2.2 Frequency distribution and non-stationary models 

 

The three-parameter Generalised Extreme Value (GEV)  distribution is commonly applied to 

Annual Maximum Series (AMS) of rainfall data. The GEV has been determined to be a suitable 

distribution for design rainfall estimation in South Africa (Smithers, 1996; Smithers and 

Schulze, 2000b) and it allows the incorporation of non-stationarity through varying parameters. 

The GEV distribution was thus selected for use in this research to evaluate the non-stationarity 

of rainfall data over time. 

The GEV distribution function is used to model time series of annual maximum series data or 

block maxima. The GEV cumulative distribution function is given as (Coles, 2001):  

Ψ𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥) = exp �−�1 + 𝜉𝜉 ⋅ �𝑥𝑥−𝜇𝜇
𝜎𝜎
��

−1𝜉𝜉
�     (2.1) 

 

for 1 + 𝜉𝜉 ⋅ ((𝑥𝑥 − 𝜇𝜇)/𝜎𝜎) > 0. 𝜇𝜇,𝜎𝜎, and 𝜉𝜉 are the parameters of the distribution: 𝜇𝜇 is the location 

parameter, 𝜎𝜎 > 0 is the scale parameter, and 𝜉𝜉 is the shape parameter which defines the tail 

behaviour of the distribution. The stationary GEV model can be extended for dependent series 

by letting the parameters of the distribution be a function of a general covariate 𝑥𝑥𝑐𝑐, i.e., 

𝜇𝜇(𝑥𝑥𝑐𝑐),𝜎𝜎(𝑥𝑥𝑐𝑐), 𝜉𝜉(𝑥𝑥𝑐𝑐) (Coles, 2001). Hence, the non-stationary form of Eq. (2.1) is described as: 

Ψ𝐺𝐺𝐺𝐺𝐺𝐺(𝑥𝑥 ∣ 𝑥𝑥𝑐𝑐) = exp �−�1 + 𝜉𝜉(𝑥𝑥𝑐𝑐) ⋅ �𝑥𝑥−𝜇𝜇(𝑥𝑥𝑐𝑐)
𝜎𝜎(𝑥𝑥𝑐𝑐) ��

− 1
𝜉𝜉(𝑥𝑥𝑐𝑐)

�  (2.2) 
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The concept of effective return period or effective design value is defined as 𝑞𝑞-quantile, 𝑄𝑄, 

varying as a function of a given covariate, e.g., temporal and/or physical. Therefore, for a 

constant value of 𝑅𝑅𝑅𝑅 = 1/𝑞𝑞, where 𝑞𝑞 is the annual exceedance probability, the effective return 

period is defined as: 

 

��𝑥𝑥𝑐𝑐 ,𝑄𝑄𝑞𝑞(𝑥𝑥𝑐𝑐)� ,  𝑞𝑞 ∈ [0,1]�      (2.3) 

where 

 𝑥𝑥𝑐𝑐   = the covariate, and 

 𝑄𝑄𝑞𝑞(𝑥𝑥𝑐𝑐) = the 𝑞𝑞-quantile. 

 

The Process-informed Non-stationary Extreme Value Analysis (ProNEVA) is a tool in 

MATLAB developed by Ragno et al. (2019b) in which the non-stationary component is 

defined by a temporal or physical driver. This tool has been used to perform stationary and 

non-stationary rainfall frequency analysis for this study. 

 

2.2.2.3 Selection of covariates  
 

According to Agilan and Umamahesh (2017), the most suitable covariates for short-duration 

rainfall events (less than 24 hours) are local processes, e.g. local temperature changes and 

urbanisation, whilst the most suitable covariates for long-duration (1-day and greater) rainfall 

events are global processes, such as global temperature change, the El Niño-Southern 

Oscillation (ENSO) cycle, and the Indian Ocean Dipole (IOD) cycle. ENSO and IOD are 

significant drivers of the southern African climate during the austral summer rainy season, and 

have thus been used in numerous studies to predict the occurrence of extremes (Gaughan et al., 

2016; Hoell et al., 2021; Lüdecke et al., 2021).  

 

ENSO and IOD are related to sea surface variations and air pressure across the world, based 

on observed data. ENSO is represented by the Southern Oscillation Index (SOI), which is 

associated with warm Sea Surface Temperatures (SST) and is characterised by the variations 
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between the Indonesian Low pressure system and the South Pacific Tropical High pressure 

system (de Silva and Hornberger, 2019). The IOD is an oscillation of SST in the equatorial 

Indian Ocean and is considered relevant to the climate of countries surrounded by the Indian 

Ocean. It is represented by the Dipole Mode Index (DMI). The effects of ENSO and IOD are 

considered to be independent (de Silva and Hornberger, 2019), hence both phenomena are 

considered as potential significant covariates for this study. 
 

As changes in temperature are linked to increased greenhouse gas concentrations (IPCC, 2017), 

and these climate process behaviours and their associations are potentially non-stationary 

(Endris et al., 2019), CO2 concentrations for South Africa and Global Mean Temperatures 

(GMT) were included as potential significant covariates for this study.  

 

The main purpose of this chapter is to contribute to an understanding of the teleconnection 

patterns between the Southern Oscillation Index (SOI), Dipole Mode Index (DMI), Carbon 

Dioxide (CO2), and Global Mean Temperature (GMT) and annual maximum daily extreme 

rainfall in KZN, in identifying non-stationary patterns in the data. Data used for the analyses 

are SOI and DMI monthly data from 1928 – 2020 (Bureau of Meteorology, 2023), annual 

global carbon emissions data (MtCO2) from 1960 – 2020 (Global Carbon Atlas, 2023), and 

global mean temperature data from 1928 – 2020 (National Aeronautics and Space 

Administration, 2023). 

 

2.2.2.4 Model diagnostics and selection of the best model 

 

The purpose of fitting a statistical model, whether it is stationary or non-stationary, is to 

characterise the population from which the data were drawn for further analysis. Hence, it is 

necessary to check the performance of the fitted model to the data (Coles, 2001). Several 

metrics are implemented to assess the Goodness of Fit (GOF) and support model selection, 

including: (1) the Akaike Information Criterion (AIC), (2) the Bayesian Information Criterion 

(BIC), and (3) the Root Mean Square Error (RMSE). 
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The Akaike Information Criterion,  (AIC) (Akaike, 1974), is a GOF measure that compares the 

frequency models and represents how well each model fits the data relative to other models. 

The lower the AIC value, the better the model performance, in comparison to other models. 

The AIC is computed as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴 = 2 ⋅ (𝐷𝐷 − �̂�𝐿)       (2.4) 

where 𝐷𝐷 is the number of parameters of the statistical model and �̂�𝐿 is the log-likelihood function 

which is a measure of how well a particular model fits the data using the probability density of 

observed data viewed as a function of the parameters of a statistical model. 

 

The Bayesian Information Criterion (BIC) (Schwarz, 1978) is defined as: 

𝐵𝐵𝐴𝐴𝐴𝐴 = 𝐷𝐷 ⋅ ln (𝑁𝑁) − 2 ⋅ �̂�𝐿,      (2.5) 

where 𝑁𝑁 is the length of records. As with AIC, the model with lower BIC yields the best fit. 

The Root Mean Square Error (RMSE) is widely used in hydrology and climatology as a GOF 

measurement, and is given by  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑𝑖𝑖=1
𝑛𝑛  ( 𝑦𝑦𝑖𝑖 − 𝑌𝑌𝑖𝑖)2

𝑛𝑛
      (2.6) 

where  

𝑦𝑦𝑖𝑖   =  the actual value for the  𝑖𝑖th observation, 

𝑌𝑌𝑖𝑖  = the predicted value for the  𝑖𝑖th observation, and 

𝑛𝑛  = the number of observations. 

A perfect fit is associated with 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 0, given 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∈ [0, ∞). 

 

2.3 Results and Discussion 

 

2.3.1 Trend detection 

 

Table 2.2 contains a summary of results for the analyses of the AMS from 39 stations subjected 

to the MKT and Sen’s slope test. The MKT was evaluated at the 5% significance level. Figure 

7.1 in Appendix A contains the graphs depicting the time series plot for each station assessed. 

Based on the MKT and Sen’s test, the results indicate that for the majority of the stations in the 
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KZN study region no significant upward trend over time was detected, with approximately 

40% of stations showing a positive trend and only one station (Station 38: Sezela - Illovo Sugar 

Estate), located on the south coast of the province, showing a significant positive trend, as 

shown in Figure 2.3. It is noteworthy that this station has one of the shortest record lengths, 

which could influence the results. These results highlight the difficulties in detecting significant 

trends in relatively short and highly variable at-site hydro-meteorological series, especially 

when using non-parametric tests with relatively low statistical power. The results are similar 

to those found  by Kibii (2021), who assessed seasonal and annual rainfall trends in South 

Africa and found that daily rainfall reflected insignificant trends. 

 

  
Figure 2.3  Time series for Station 38 
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Table 2.2 Trends in KwaZulu-Natal extreme rainfall using the Mann-Kendall test 

Station Name 
SASRI 
Station  
Number 

p-
value 

Sen's 
Slope Interpretation of Test 

Pongola – SASRI 6 0.088 0.426 Insignificant positive trend 
Glen Park – St Lucia Farms 8 0.147 -0.367 Insignificant negative trend 
Mtubatuba – Riverview Sugar Mill 9 0.092 -0.609 Insignificant negative trend 
Mtunzini – ex SASRI 11 0.674 -0.150 Insignificant negative trend 
Melmoth – CA Leith & Sons 12 0.747 0.070 Insignificant positive trend 
Glendale – Tenrith Farm 18 0.165 -0.396 Insignificant negative trend 
Tongaat – Klipfontein (THS) 20 0.472 -0.244 Insignificant negative trend 
Seven Oaks – Saw Mill 22 0.983 0.000 Insignificant trend 
Noodsberg – Illovo Sugar Mill 23 0.604 0.073 Insignificant positive trend 
Illovo – Sugar Estate 26 0.389 0.333 Insignificant positive trend 
Vulamehlo – Esperanza 27 0.985 0.000 Insignificant positive trend 
Mt Edgecombe – SASRI 29 0.075 0.250 Insignificant positive trend 
Sezela – Illovo Sugar Estate 38 0.023* 0.810* Significant positive trend* 
Oribi Flats – Minnehaha Farm 105 0.539 0.255 Insignificant positive trend 
Renishaw – Crooks Bros Estate 110 0.070 0.613 Insignificant positive trend 
Powerscourt – Roseleigh Estate 111 0.147 -0.344 Insignificant negative trend 
Inanda – Farm 114 0.835 -0.062 Insignificant negative trend 
Inyaninga – THS 120 0.585 -0.121 Insignificant negative trend 
Maidstone – Sugar Mill (THS) 123 0.509 0.167 Insignificant positive trend 
Sinembe – Spreyton Farm 125 0.138 0.323 Insignificant positive trend 
Upper Tongaat – B rwon Farm 126 0.354 0.208 Insignificant positive trend 
Kearsney – Ocean Lodge 129 0.461 -0.081 Insignificant negative trend 
Doornkop – Langespruit Farm 130 0.780 -0.033 Insignificant negative trend 
Darnall – Sugar Mill (THS) 131 0.672 0.092 Insignificant negative trend 
Tugela Mouth – Wetherly Estate 132 0.468 -0.191 Insignificant negative trend 
Glenside – Misty Krantz Estate 136 0.100 -0.448 Insignificant negative trend 
Mandini – SAWS 138 0.206 0.401 Insignificant positive trend 
Inyoni – Myrln Estate 139 0.147 0.359 Insignificant positive trend 
Eshowe – Brocklee Farm 142 0.404 -0.195 Insignificant negative trend 
Nkwaleni – Zigagazi 143 0.826 -0.039 Insignificant negative trend 
Felixton – Sugar Mill (THS) 144 0.631 -0.136 Insignificant negative trend 
Kulu Halt – Honey Farm 146 0.516 -0.176 Insignificant negative trend 
Ukulu Properties – Crystal Holdings 147 0.655 -0.129 Insignificant negative trend 
Mposa – Redcroft Farm 148 0.972 0.007 Insignificant positive trend 
Kwambonambi – Mondi Forestry 149 0.242 -0.257 Insignificant negative trend 
ULOA – Mark & Ross Sugar Estate 151 0.517 -0.203 Insignificant negative trend 
Mtubatuba - Nyalazi River 152 0.367 -0.230 Insignificant negative trend 
Mkuze – Mkuze Estate 154 0.839 -0.023 Insignificant negative trend 
Pongola – Impala Irrigation Board 155 0.235 0.249 Insignificant positive trend 

*Significant trends at 5% level identified 
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2.3.2 Analysis of stationary and non-stationary models  

 

Both stationary and non-stationary frequency analyses were undertaken using the GEV 

distribution for all stations in the study area. For the non-stationary frequency analysis, the 

location and scale parameters of the GEV distribution were modelled as linear functions of the 

selected covariates and the shape parameter was kept constant. 

 

Firstly, the non-stationary models considering time as a covariate were compared to the 

stationary models for each station.  Table 2.3 contains a summary of results for the AIC, BIC 

and RMSE tests considering time as a covariate at the 39 stations used in the study. The AIC 

and BIC and RMSE values of the stationary model are lower than those of the non-stationary 

model for most stations. Based on the AIC, the results indicate that 35 out of 39 stations in the 

KZN region are better modelled through the stationary model, as lower AIC, BIC, and RMSE 

values indicate a superior performing model (Ragno et al., 2019b). The non-stationary models 

provided a better fit than the corresponding stationary model at only four stations (38, 136, 138 

and 152). Using the BIC measure, the non-stationary models for only one station (138) were 

found to give a better fit of the data. Ouarda et al. (2020) found similar results considering time 

as covariate in the non-stationary model. 

 

Table 2.3 The GEV statistical model performance criteria of selected sites in 

KwaZulu-Natal AMDR for time as a covariate 

Station  
Name 

SASRI 
Station 

Number 

Stationary Non-Stationary 

AIC BIC RMSE AIC BIC RMSE 

Pongola - SASRI 6 460.81 466.49 1.62 462.90 474.25 1.29 
Glen Park - St Lucia 
Farms 8 558.34 564.36 1.55 562.22 574.27 1.27 
Mtubatuba - 
Riverview Sugar Mill 9 575.74 581.70 1.82 579.30 591.24 1.60 
Mtunzini - ex SASRI 11 580.81 586.83 1.32 587.07 599.11 1.41 
Melmoth - CA Leith 
& Sons 12 524.07 529.98 2.01 530.18 542.00 2.18 
Glendale - Tenrith 
Farm 18 538.31 544.27 1.24 542.06 553.99 1.63 
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Station  
Name 

SASRI 
Station 

Number 

Stationary Non-Stationary 

AIC BIC RMSE AIC BIC RMSE 

Tongaat - Klipfontein 
(THS) 20 549.95 555.97 1.24 553.22 565.27 1.66 
Seven Oaks - Saw 
Mill 22 493.72 499.74 4.30 495.97 508.02 3.57 
Noodsberg - Illovo 
Sugar Mill 23 433.83 439.57 2.60 440.31 451.78 2.73 
Illovo - Sugar Estate 26 531.30 537.10 1.76 536.26 547.85 1.35 
Vulamehlo - 
Esperanza 27 504.05 509.60 1.88 508.19 519.30 1.58 
Mt Edgecombe - 
SASRI 29 954.38 961.98 1.45 956.19 971.39 1.16 
Sezela - Illovo Sugar 
Estate 38 449.01 454.36 1.79 447.38* 456.30 1.71* 
Oribi Flats - 
Minnehaha Farm 105 597.12 603.20 1.22 600.91 613.06 0.99 
Renishaw - Crooks 
Bros Estate 110 678.80 685.27 1.18 681.18 694.14 0.97 
Powerscourt - 
Roseleigh Estate 111 650.68 657.16 1.71 654.17 667.12 1.47 
Inanda - Farm 114 654.36 660.84 1.68 660.62 673.57 1.49 
Inyaninga - THS 120 638.31 644.73 1.12 641.61 654.47 0.97 
Maidstone - Sugar 
Mill (THS) 123 644.55 651.02 1.53 649.04 662.00 1.39 
Sinembe - Spreyton 
Farm 125 646.42 652.90 1.87 647.89 660.84 2.15 
Upper Tongaat - 
Barwon Farm 126 650.56 657.04 1.75 655.20 668.15 1.57 
Kearsney - Ocean 
Lodge 129 624.55 631.03 2.60 627.67 640.62 2.11 
Doornkop - 
Langespruit Farm 130 633.31 639.74 1.45 639.00 651.86 1.15 
Darnall - Sugar Mill 
(THS) 131 644.40 650.87 1.62 650.88 663.84 1.88 
Tugela Mouth - 
Wetherly Estate 132 582.99 589.23 1.38 587.49 599.96 0.96 
Glenside - Misty 
Krantz Estate 136 449.30 454.65 5.50 441.49* 450.41 4.77* 
Mandini - SAWS 138 669.56 676.04 3.14 663.81* 674.60* 2.37* 
Inyoni - Myrln Estate 139 655.28 661.76 1.53 658.52 671.47 1.26 
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Station  
Name 

SASRI 
Station 

Number 

Stationary Non-Stationary 

AIC BIC RMSE AIC BIC RMSE 

Eshowe - Brocklee 
Farm 142 649.98 656.46 1.43 653.17 666.12 1.03 
Nkwaleni - Zigagazi 143 639.43 645.91 1.86 644.96 657.91 1.61 
Felixton - Sugar Mill 
(THS) 144 658.45 664.92 1.53 662.85 675.80 1.41 
Kulu Halt - Honey 
Farm 146 674.01 680.48 1.63 679.81 692.77 1.53 
Ukulu Properties - 
Crystal Holdings 147 672.21 678.69 1.42 677.51 690.46 2.02 
Mposa - Redcroft 
Farm 148 658.21 664.68 1.61 664.53 677.49 1.64 
Kwambonambi - 
Mondi Forestry 149 656.35 662.82 2.01 664.71 677.66 2.00 
ULOA - Mark & 
Ross Sugar Estate 151 639.67 645.90 3.13 645.48 657.94 2.83 
Mtubatuba - Nyalazi 
River 152 578.80 585.03 2.13 578.77* 591.24 1.31* 
Mkuze - Mkuze 
Estate 154 612.12 618.59 2.37 617.67 630.62 1.14 
Pongola - Impala 
Irrigation Board 155 615.82 622.30 2.09 618.61 631.57 2.37 

* Non-stationary model performs better than stationary model overall 

Station 38 (Sezela - Illovo Sugar Estate) in Figure 2.4 was the only station to show a significant 

increase in rainfall over time and have the non-stationary time-model outperform the stationary 

model. This station also showed an increase in the effective return period of rainfall, which 

summarizes the impact of time on rainfall by describing return periods as functions of time (x-

axis). Although Station 38 showed a positive trend in data and a corresponding increase in 

overall effective return periods, the trends of effective return periods vary for each station and 

a positive trend does not necessarily correlate to an increasing effective return period. 

 

The effective return period for Station 38 is shown to increase as a function of time for all 

return periods. Figure 6.3 depicts the GEV for the: (a) stationary model, (b) non-stationary 

model, and (c) effective return period as a function of time for Station 38: Sezela (Illovo Sugar 

Estate). Appendix A (Figure 7.2 to Figure 7.40) contains the plots for the stationary and non-

stationary frequency analyses for all covariates and effective return periods for all stations.  



   

 

50 

 

a)  b)  

c)  

 

Figure 2.4 The GEV (a) stationary model, (b) non-stationary model considering time 

as a covariate, and (c) effective return period as a function of time for 

Station 38: Sezela - Illovo Sugar Estate 

 

Secondly, the non-stationary models considering SOI, DMI, CO2 and GMT as covariates were 

compared to the stationary models for each station.  Table 2.4 summarises the best-fit models 

for the stationary and non-stationary cases based on AIC and BIC measures. The detailed 

results are presented in Table 7.1 in Appendix A. The stationary models perform better than 

the non-stationary models at 56 % and 36 % of stations, based on the AIC and BIC measures, 

respectively. Some non-stationarity is noted with respect to time; however, very little impact 

due to SOI and DMI is evident.  
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Most often the stations where the non-stationary CO2 model outperformed the other models 

resulted in consistent trends for  both AIC and BIC tests. This indicates that it may be argued 

that climate driving factors, such as CO2 changes, largely influence extreme rainfalls in KZN. 

None of the non-stationary models considering GMT as a covariate outperformed any other 

model.  

 

Table 2.4 Summary of best-fit models for all stationary and non-stationary cases  

AIC BIC 
Model Number of best-fit 

models 
Model Number of best-fit 

models 
Stationary  22 (56 %) Stationary  14 (36 %) 
Non-stationary - Time  4 (10 %) Non-stationary - Time   2  (5 %) 
Non-stationary - SOI  4 (10 %) Non-stationary - SOI   0   (0 %) 
Non-stationary - DMI  1   (3 %) Non-stationary - DMI  0  (0 %) 
Non-stationary - CO2  8 (21 %) Non-stationary - CO2 23 (59 %) 
Non-stationary - GMT  0   (0 %) Non-stationary - GMT    0   (0 %) 

 

Figure 2.5 and Figure 2.6 show the locations of which models best fit the data based on AIC 

and BIC, respectively. No spatial patterns are evident based on the location of the best-fit non-

stationary models. 
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Figure 2.5 Best-fit distribution model, based on the AIC measure 

 
Figure 2.6 Best-fit distribution model, based on the BIC measure 
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2.3.3 Projected changes in rainfall 

 

The results of the analysis of observed data in the previous sections mostly show insignificant 

changes in historical extreme rainfalls and design rainfalls. However, there is still a need to 

understand possible future scenarios for design purposes. To consider the projected changes in 

rainfall and the possible climate change factors, or ratios, that could be applied to current design 

rainfall depths to estimate design for future scenarios, an ensemble of very high-resolution 

climate model simulations of present-day climate as well as projections of future climate 

changes over South Africa was selected. These projections were produced by the CSIR using 

the CCAM regional climate model and were further bias-corrected to local observed 

temperature and rainfall data by Schütte et al. (2023). The data used in this study were sourced 

from Schütte et al. (2023) and contains outputs from six GCMs from the CMIP5 archive based 

on the Representative Concentration Pathway (RCP) Scenarios 8.5, i.e. the “business as usual” 

scenario of Greenhouse Gas emissions into the future. The simulations span the period 1961-

2100. 

 

The six GCMs are the:  

• Australian Community Climate and Earth System Simulator (ACCESS1-0),  

• Community Climate System Model (CCSM4),  

• National Center for Meteorological Research Coupled Global Climate Model, v5 (CNRM-

CM5),  

• Geophysical Fluid Dynamics Laboratory Coupled Model (GFDL-CM3),  

• Max Planck Institute Coupled Earth System Model (MPI-ESM-LR), and   

• Norwegian Earth System Model (NorESM1-M). 

 

Schütte et al. (2023) bias corrected the daily rainfall to the spatial resolution of the Quinary 

catchments, where the bias correction involved matching the GCM output with observations 

for an identical historical period. To verify whether the GCM output captured the observed 

record for the SASRI stations, the annual maximum rainfalls derived from the 6 GCMs were 

plotted against those from the SASRI station AMDRs (Figure 7.41 to Figure 7.79 in Appendix 

A). Generally, the GCMs’ annual maximum rainfalls were found to be greater than the 
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observed values. It is noteworthy that the GCMs’ outputs cannot be expected to have the 

maximum rainfalls at the same time period as the observed values, but are rather useful for 

evaluating future trends. Therefore, the GCMs were used to analyse the projected rainfall for 

the region. 

Using the annual maximum rainfall from the GCMs, design rainfalls were calculated for the 1-

day event for the 2-, 10-, 50- and 100-year return periods. The ratios of changes from the 

GCMs’ present (1961-1990) to the near future (2015-2044) and from the present to the distant 

future (2070-2099) for design rainfalls were calculated. The average projected changes from 

the ‘present to near future’ and the ‘present to distant future’ for the ensemble mean of the 6 

GCMs are shown in Figure 2.7 and Figure 2.8, respectively. The ratios for each GCM for each 

return period are presented in Appendix A (Figure 7.80 to Figure 7.87). 

The majority of sites along the coastline show no increase in 1-day design rainfall for the near 

future. Slight increases are notable further inland, with the ratios increasing with an increase in 

return period. Projected changes into the distant future show a 10 – 30% increase in 1-day 

design rainfalls in many locations. 
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2-year RP 10-year RP 
 

50-Year RP 100-Year RP 

 

Figure 2.7 Projected changes from the present to the near future in design rainfalls for 1-

day design rainfalls for the 2-, 10-, 50-, and 100-year return periods, derived 

from outputs from multiple GCMs 
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2-year RP 10-year RP  

50-Year RP 100-Year RP 

 

Figure 2.8 Projected changes from the present to the distant future in design rainfalls 

for 1-day design rainfalls for the 2-, 10-, 50-, and 100-year return period, 

derived from outputs from multiple GCMs 

 

2.4 Conclusions 

 

The reported increases in extreme rainfall events and their impacts reported from around the 

world, and particularly the east coast of South Africa in recent years, have motivated a move 

towards a non-stationary approach to frequency analysis to ensure that the changing properties 
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of extremes are accounted for in design rainfall estimation, and consequently, in the design and 

flood risk assessent of hydraulic infrastructure.  

 

This chapter investigated the presence of non-stationarity in the annual maximum values of 

extreme daily rainfalls in KwaZulu-Natal along the east coast of South Africa. The location of 

the study was chosen based on data availability from SASRI as no data were accessible through 

SAWS for use in this study. A total of 39 daily rainfall stations with record lengths of at least 

40 years were analysed to investigate trends in the occurrences of extreme rainfalls.  The MKT 

and Sen’s slope were used to determine the trends in the AMDR, and results indicate that only 

one station (No. 38) out of 39 showed a significant increasing trend in annual maximum rainfall 

occurrences. Frequency analysis was performed using both stationary and non-stationary 

models using time, SOI, DMI, CO2 and GMT as covariates and the results show that the 

stationary models are superior to non-stationary models at most stations when using the model 

diagnostic and selection methods such as AIC, BIC and RMSE. Only changes in the CO2 

covariate were shown to significantly impact the extreme rainfalls. Investigation of trends at 

other sites in the country located in various climate zones is recommended. 

 

Endris et al. (2019) note that although SOI may not exhibit significant changes, the long-term 

trend in SST and the corresponding changes in atmospheric circulations may influence SOI 

related teleconnections. This means that if the conditions associated with SOI change, even if 

the SOI characteristics do not change, then rainfall characteristics can possibly change in 

regions that respond to SOI. Therefore, investigating future changes in rainfall associated with 

SOI and other indices driven by SST changes is crucial in understanding the changing 

vulnerability to extreme events. Further research into understanding the frequency distributions 

of the actual covariates, and how they are projected to change, is recommended. 

 

With the increasing availability of projected climate information through GCMs, there is 

greater opportunity to use such data to determine the potential impacts of future climate 

scenarios on extreme rainfall and flood events using advanced statistical techniques, and to 

develop methods/tools to incorporate these trends into design rainfall and flood estimation. 

This study investigated the projected changes in design rainfalls using data from downscaled 
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GCMs and noted that rainfalls are not projected to change significantly into the near future in 

the study area. Increases into the distant future along the KZN coastal region are expected to 

be around 10 – 30% for many parts. The use of projected rainfalls from GCMs should be well 

guided by the considerations based on the observed rainfall data trends. However, for other 

parts of the country, these changes could be greater as was found, for example, by Schütte et 

al., (2022). 

 

The variability of the results of the non-stationary analysis highlights the importance of 

understanding the trends and drivers of extreme rainfalls and the impacts on design rainfall and 

design flood estimation. The results of the non-stationary analysis can be improved by 

investigating the use of other physical covariates or climate drivers, e.g., large weather systems 

such as Cut-off Lows, as well as combinations of covariates. 

 

The annual maximum series is widely adopted in rainfall frequency analyses, as the sampling 

process is straightforward. However, using a peaks-over-threshold (POT) model is an 

alternative approach used to represent the behaviour of exceedances above a selected threshold, 

and which offers the opportunity to include more observations in the dataset and hence, more 

flexibility when compared to the use of annual maxima (Pan et al., 2022). Despite the 

theoretical advantages, the POT is underutilised internationally due to the complexity in the  

selection of appropriate thresholds. It is recommended that the POT approach be investigated 

for detecting non-stationarity in extreme rainfall data in South Africa. 

 

This study analysed the 1-day rainfall event. However, in KZN coastal areas extremes are 

frequently associated with multi-day events. Therefore, the non-stationary analysis of short 

duration (< 24h), required for DFE in most urban catchments,  and multi-day extreme event 

data is recommended for future research.  
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3. DETECTING TRENDS IN HYDROLOGICAL EXTREMES AND 

NON-STATIONARY EXTREME VALUE ANALYSIS OF FLOOD 

DATA IN KWAZULU-NATAL 
D Mukansi, JC Smithers and KA Johnson 

3.1 Introduction 

 

In order to minimise the risk of failure of hydrological structures it is vital to ensure that design 

floods be adequately estimated. The underestimation of design floods can lead to loss of life 

and significant economic losses, while overestimation may result in over-design which results 

in adverse economic impacts. The South African Government has reported that the most 

common weather-related catastrophe in South African between the period 1900 to 2014 were 

floods, droughts and large storms (DFFE, 2016). Socio-economic losses due to such disasters 

can be minimised by adequate Design Flood Estimation (DFE). 

 

As with rainfall analysis, the current methods and models used to determine design flood 

estimates from flow data assume that hydrological outputs remain stationary (Vogel et al., 

2011). However, the magnitude and frequency of extreme flood events is changing in many 

parts of the world (Vogel et al., 2011; Prosdocimi et al., 2014a; Hesarkazzazi et al., 2021). 

Therefore, there is a need to investigate, and to incorporate if necessary, non-stationary models 

in DFE in South Africa.  

 

Where observed data are available, frequency analysis of the  data  is the recommend approach 

for design rainfall and flood estimation when there is adequate record length and good quality 

observed data (Smithers, 2012a). The quality of observed flow data is influenced by 

hydrometrics such as incorrect manual capturing of data, malfunctioning of measuring 

instruments, poor maintenance of the gauging site and exceedance of the rating table 

(Nathanael, 2015). Smithers et al. (2015)  highlighted that South Africa has relatively few  

streamflow gauging stations which have more than 50 years of good quality data. However, it 

is important that data are adequately screened to prevent incorrect estimations of design floods 

(Calitz, 2020). 
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This chapter includes an analysis of trends in extreme floods along the East Coast of KwaZulu-

Natal in South Africa. This study site was selected to complement and correspond to the rainfall 

analyses conducted in Chapter 2. The aims of the study reported in this chapter are to determine 

if any trends exist in observed extreme flood events along the East Coast of KwaZulu-Natal, 

and to evaluate the possible non-stationarity in observed flow data. The objectives are to: (i) 

collect, screen, and analyse the streamflow data for trends, (ii) perform stationary and non-

stationary rainfall frequency analyses, (iii) critically evaluate the stationary vs non-stationary 

models, and (iv) investigate regional magnification factors to detect trends. 

 

3.2 Materials and Methods 

 

3.2.1 Data sources and case study site selection  

 

The Annual Maximum Series (AMS) streamflow data were obtained from the Department of 

Water and Sanitation (DWS) website, which provides open access of up-to-date flow data for 

South Africa.  Approximately 90 stations with flow data up to the year 2023 were extracted 

from the DWS database for stations located in the East Coast region of KwaZulu-Natal.   

 

3.2.2 Data screening and assessment  

 

The flow data were then screened according to the criteria and methods described in Sections 

2.2.1. In addition to the criteria used in Section 2.2.1, the data were screened based on the 

recorded depth of flow. If the recorded depth of flow exceeded the maximum rating table depth, 

the data were extended by a maximum of 20%. However, the percentage of rating table 

exceedances recorded in the AMS should be less than 20% of the total record length 

(Nathanael, 2015).  
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3.2.2.1 Rating table exceedance  

 

Most streamflow gauging stations do not measure the discharge directly; rather, the stations 

record the stage height which is correlated with discharge (Petersen-Øverleir and Reitan, 2009). 

Rating table exceedance refers to an occurrence where the maximum stage rating is exceeded. 

In this case the discharge associated with the maximum stage rating is recorded by DWS for 

the observations which exceed the maximum rated stage (Nathanael, 2015). The DWS codes 

this error with “A”, which means that some of the potential high flows are not captured and 

should be extrapolated (Calitz, 2020).  

 

There are various methods used to extrapolate the rating curve, including the extension of the 

fitted regression line and the hydraulic analysis which requires additional data (Haddad et al., 

2010). The various methods contain uncertainty in the estimation of the extrapolated discharge 

(Petersen-Øverleir and Reitan, 2009). The challenge with extension of the rating curve using a 

regression approach is that the larger the extension the greater the uncertainty in the estimated 

flow (Calitz, 2020).  Haddad et al. (2010) used the rating ratio approach, which is the ratio of 

estimated flow to the maximum observed flow to determine the maximum allowable 

extrapolation. Nathanael (2015), Gericke and Smithers (2018), and Calitz (2020) adopted 20% 

to be the maximum allowable increase in flow discharge. Based on the selection criteria 

described in Section 2.2.1 and the rating exceedance criteria, 19 sites were selected for this 

study. Figure 3.1 shows the locations and Table 3.1 contains a summary of the stations selected. 
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Figure 3.1  Selected DWS streamflow recording stations along the East Coast of KwaZulu-

Natal 

 

Table 3.1 Station information for case study sites along the East Coast of KwaZulu-

Natal 

Station Name  
DWS 

Station 
Number 

Start 
Year 

End 
Year 

Record 
Length 
(years) 

Mzimkhulwana River-Horseshoe   T5H012 1970 2023 53 
Mgeni River-Howick U2H001 1948 1993 45 
Mgeni River-Table Mountain U2H005 1950 2023 73 
Karkloof River-Shafton  U2H006 1954 2023 69 
Sterk River-Groothoek U2H012 1960 2023 63 
Mgeni River-Albert Falls U2H014 1964 2023 59 
Mgeni River-Midmar U2H048 1968 2023 55 
Mdloti River-Cotton Lands U3H005 1975 2023 48 
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3.2.3 Methodology  

The basic methodology applied in this study to determine extreme streamflow quantities at a 

given location, and how they may vary with respect to a selected covariate, are detailed in the 

following sections. The main steps involved in this approach are summarised in Figure 3.2.  

Mvoti River-Mistley U4H002 1949 2023 74 
Mlazi River-Umlaas U6H003 1981 2023 42 
Lovu River-Beaulieu Estate U7H007 1964 2023 59 
Tugela River-Mandini V5H002 1956 2023 67 
Mlalazi River-Eshowe W1H004 1948 2023 75 
Mhlatuze-Riverview W1H009 1960 2023 63 
Mhlatuze River-Mhlatuze W1H028 1979 2023 44 
White Mfolozi-Over W2H005 1960 2020 60 
Hluhluwe River-Farm 3/7638 W3H022 1964 2023 59 
Right Canal from Phongolo River-The Bokfontein W4H012 1950 2023 73 
Mkuze River @ Rietboklaagte W3H001 1966 2023 57 
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Figure 3.2 Stationary and non-stationary design flood estimation procedures  

 

3.2.3.1 Testing for homogeneity  

When performing a trend test it is important that the results reflect only actual changes in the 

non-stationarity of the hydrological process and not inconsistencies in the measuring system 

(Xiong and Guo, 2004). There are common measurement errors that occur when data are 

recorded, such as movement of the gauging station, changes in measurement structures and 

rating/calibration equations (Mallakpour and Villarini, 2016). A homogeneity test can be used 

to determine the point/s at which change occur in a data set.  

 

 The Pettitt test is a non-parametric method that is used to detect a sudden change in the data 

set (Conte et al., 2019). A change point is defined as point in the data set where there is a 

sudden change in the mean, median, and variance. The change may be due to natural or 
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anthropogenic changes in the data set (Scott and Chandler, 2011). The non-parametric method 

outputs the time of the change and its associated probability (Rougé et al., 2013). The null 

hypothesis (Ho) of the method is that there is no change in trend, while the alternative 

hypothesis (Ha) is that there is a trend. The analysis is performed by rejecting the Ho if the 

probability of the change is greater than the significance level chosen to perform the analysis 

(Faulkner et al., 2020b). The disadvantage of the method is that it only detects a change at a 

single point, and that the method categorises gradual trends as sudden changes (Rougé et al., 

2013). 

 

3.2.3.2 Trends in flood extremes  

 

The non-parametric Mann-Kendall test and Sen’s slope test, as described in Section 2.2.2.1, 

were used to determine trends in streamflow. 

 

3.2.3.3 Frequency distribution and non-stationary models 

 

Process-informed Nonstationary Extreme Value Analysis (ProNEVA) in MATLAB was used 

to analyse stationary and non-stationary models. The tool allows the user to incorporate 

different types of physical drivers and it can be used to model the Log-Pearson Type III (LP3), 

GEV and Grand Pareto (GPA) distributions. ProNEVA makes use of a newly developed hybrid 

evolution Markov Chain Monte Carlo approach for uncertainty assessment and numerical 

parameters estimation (Ragno et al., 2019a). Details of the LP3 methods were reported by 

Griffis and Stedinger (2007) and Singo et al. (2012). Kjeldsen et al. (2002) analysed annual 

maximum floods in KwaZulu-Natal and concluded that the Log-normal, LP3, and GPA 

distributions were the most suitable models. Görgens (2007) recommended the use of the LP3 

and GEV to model floods in South Africa. The LP3 was chosen in this study as it was found to 

be suitable for floods analysis in most design flood estimation studies in South Africa. 
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3.2.3.4 Selection of covariates  
 

Time is often used as a proxy for the identification of physical drivers that vary with time such 

as land use and land cover changes (Hesarkazzazi et al., 2021). These physical drivers are 

responsible for the change in the annual flood series. In other studies by Villarini et al. (2009) 

and Prosdocimi et al. (2014a), extreme rainfall was used as a covariate. Table 3.2 contains a 

summary of studies that make use of different covariates such as time, population, and rainfall. 

In a study by Hesarkazzazi et al. (2021), rainfall, time and temperature were used as covariates 

of annual floods and the study concluded that the best model often includes rainfall as a 

covariate. Owing to the limitation on the availability of data, only time and rainfall were used 

as covariates in this study. 
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Table 3.2  Summary of studies that made use of non-stationary models in design flood 

estimation  (after Prosdocimi and Kjeldsen (2021) 

 

 

 

 

 

 

 

 

 

 

 

Distribution Variable Model Covariate Reference 
Log-Normal 
LN(μ,σ) 

River 
discharge 

Location: μ =μ0+μ1x scale: σ = 
σ0 (constant) 

Time (Vogel et al., 
2011) 

Gumbel(μ,σ)  River 
discharge 

Location: μ=g(x) (non-
parametric) scale: σ = g(x) 

(non-parametric) 

Time, 
population, 

and 
rainfall 

(Villarini et al., 
2009) 

Log-Normal 
LN(μ,σ) 

River 
discharge 

Location: 
μ =μ0+μ1x +μ12r scale: σ = σ0 

(constant) 

Time and 
99th 

rainfall 

(Prosdocimi et al., 
2014a) 

Log-Normal 
LN(μ,σ) 

River 
discharge 

Location: μ =μ0+μ1x scale: σ = 
σ0 (constant) 

Time (Zhang et al., 
2015) 

GEV(μ,σ,ξ) River 
discharge 

Location: μ =μ0+μ1x scale: 
exp( σ = σ0 +  σ1𝑥𝑥)  (constant) 

shape: ξ= 𝜉𝜉0 (constant) 

Time and  
rainfall 

(Šraj et al., 2016) 

Log-Normal 
LN(μ,σ) and 
GEV(μ,σ,ξ) 

Rainfall 
or River 

discharge 

Location: μ =μ0+μ1x scale: σ = 
σ0 (constant) shape: ξ= 𝜉𝜉0 

(constant) 

Time (Salas et al., 
2018) 

Log-Normal 
LN(μ,σ) 

River 
discharge 

Location: μ =μ0+μ1x scale: σ = 
σ0 (constant) 

Time (Kjeldsen and 
Prosdocimi, 

2021b) 
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3.2.3.5 Linking streamflow to rainfall  

In order to investigate the relationship between flow and rainfall, flow stations were linked to 

rainfall stations that fall within the same Quinary catchment. These stations were then used to 

perform stationary and non-stationary flood frequency analysis with time and rainfall as 

covariates.  

 
3.2.3.6 Model diagnostics and selection of the best model 

 

The AIC, BIC, and RMSE that as described in detail in Section 2.2.2.4 were used to select the 

best model. 

 

3.3 Results and Discussion 

 

3.3.1 Homogeneity test  

Table 3.3 contains a summary of results of the AMS for 19 stations subjected to the Petit 

homogeneity test to detect a split in the data, which refers to a point at which there is change 

in the data set. The results show that six stations (T5H012, U2H005, U2H012, U2H014, 

U7H007 and W1H028) have a split and are therefore not homogenous. However, Station 

T5H012 was included in further analysis because the period of data after the split was more 

than 40 years. Thus 14 stations were retained for further analyses.  

Table 3.3  Homogenity test of DWS stations in the East Coast of KwaZulu-Natal 

Station Number Pettit test p value Interpretation 
T5H012 < 0.0001 Not homogenous 
U2H001 0.931 Homogenous 
U2H005 0.003 Not homogenous 
U2H006 0.937 Homogenous 
U2H012 0.008 Not homogenous 
U2H014 0.046 Not homogenous 
U2H048 0.194 Homogenous 
U3H005 0.069 Homogenous 
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3.3.2 Trend detection 

 

Table 3.4 contains a summary of results of the trend analyses in the AMS for the 14 stations 

subjected to the MKT and Sen’s slope test. The test was performed using  the 5% significance 

level. Based on the tests, the results indicate that majority of the stations along the East Coast 

of KwaZulu-Natal experienced an insignificant trend, with approximately 21% of stations 

showing a positive trend and only one station (W4H012), showing a significant positive trend. 

The Sen’s slopes for 79% of the stations are negative, which indicates that even though the 

trend is not significant at the majority of the stations, the direction of the trend is negative. 

Figure 8.1 (a-n) in Appendix B contains graphs depicting the time series plot for each station 

assessed. The linear trend lines in most of the time series graphs are negative, which is 

consistent with the result of the Mann-Kendall test which resulted in a negative trend for 79% 

of the stations analysed. 

 

Table 3.4 Trends in annaul maximum streamflows at stations along the East Coast of 

KwaZulu-Natal using the Mann-Kendall test 

Station Number  p-value Sen's slope Interpretation of Test 
T5H012 0.831 0.182 insignificant positive trend 
U2H001 0.688 0.056 insignificant positive trend 
U2H006 0.239 -0.099 insignificant negative trend 
U2H048 0.099 -0.306 insignificant negative trend 
U3H005 0.012* -1.069* significant negative trend* 
U4H002 0.086 -0.004 insignificant negative trend 

U4H002 0.145 Homogenous 
U6H003 0.739 Homogenous 
U7H007 <0.0001 Not homogenous 
V5H002 0.008 Homogenous 
W1H004 0.722 Homogenous 
W1H009 0.261 Homogenous 
W1H028 0.015 Not homogenous 
W2H005 0.399 Homogenous 
W3H022 0.274 Homogenous 
W4H012 0.101 Homogenous 
W3H001 0.166 Homogenous  
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Station Number  p-value Sen's slope Interpretation of Test 
U6H003 0.0452 -0.146 insignificant negative trend 
V5H002 0.00001* -25.847* significant negative trend* 
W1H004 0.819 -0.003 insignificant negative trend 
W1H009 0.086 -1.148 insignificant negative trend 
W2H005 0.599 -0.033 insignificant negative trend 
W3H022 0.306 -0.077 insignificant negative trend 
W4H012 <0.0001* 0.102* significant positive trend* 
W3H001 0.078 -0.236 insignificant negative trend 

*Significant trends at 5% level identified 

 

3.3.3 Analysis of stationary and non-stationary models  

 

Both stationary and non-stationary frequency analyses were undertaken using the LP3 

distribution for the 14 stations in the study area. For the non-stationary frequency analysis, the 

location parameter of the LP3 distribution were modelled as linear functions of the selected 

covariate. The scale and shape parameters were kept constant. The plots, as shown in Figure 

8.2 to Figure 8.15 in Appendix B, show no significant differences between the stationary and 

non-stationary models as both models are under-simulating the high flows. 

 

Table 3.5 contains a summary of results for the AIC, BIC and RMSE tests considering time as 

a covariate at the 14 stations used in the study. In the majority of the stations AIC and BIC and 

RMSE values of the stationary model are lower than those of the non-stationary model. The 

non-stationary models provide a better fit than the corresponding stationary model at only five 

stations (U3H001, U3H005, V5H002, W1H009 and W4H012). Based on the AIC, the results 

indicate that 6 out of 14 stations (43%) along the East Coast are better modelled through the 

stationary model, as low values of AIC and BIC from the same data indicate a better performing 

model (Faulkner et al., 2020a). Using the BIC measure, the non-stationary models for only one 

station (U3H005) was found to give a better fit of the data.  

 

Table 3.5 The LP3 statistical model selection criteria of selected sites in the East Coast of 

KwaZulu-Natal AMS for time as a covariate 
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Station 
Number 

Stationary Non-Stationary 
AIC BIC RMSE AIC BIC RMSE 

T5H012 168.38 174.24 21.94 170.24 178.04 19.25* 
U2H001 138.91 144.19 38.25 140.85 147.89 29.08* 
U2H006 185.00 191.75 12.10 186.16 195.15 13.24 
U2H048 207.09 213.16 34.94 206.50* 214.57 40.36 
U3H001 107.06 112.16 19.71 106.37* 113.12 15.17* 
U3H005 176.15 181.37 9782.30 168.51* 175.45* 404.24* 
U4H002 167.92 174.15 14.02 168.48 176.79 13.75* 
U6H003 167.27 172.48 24.84 169.36 176.31 31.58 
V5H002 122.90 128.58 29.43 108.19* 115.76* 11.72* 
W1H004 299.17 305.95 25.47 301.55 310.60 66.88 
W1H009 168.59 174.44 32.37 164.98* 172.80* 25.28* 
W2H005 123.26 129.28 32.81 123.91 131.94 32.22* 
W3H022 249.08 254.94 64.95 251.06 258.86 47.91* 
W4H012 19.89 26.28 22.27 -78.60* -70.09* 32.32 

* Non-stationary model performs better than stationary model  

 

Station W4H012 was the only station to show a significant increase in streamflow. This station 

also showed an increase in the effective return period of streamflow. Figure 3.3 depicts the LP3 

for the: (a) stationary model, (b) non-stationary model, and (c) effective return period as a 

function of time for Station W4H012. The effective return period for Station W4H012 is shown 

to increase as a function of time for all return periods. Appendix B (Figure 8.2 to Figure 8.15) 

contains the plots for the stationary and non-stationary frequency analyses for all covariates 

and effective return periods for all stations.  
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Figure 3.3 The LP3 (a) stationary model, (b) non-stationary model considering time as 

a covariate, and (c) effective return period as a function of time for Station 

W4H012 

 

Figure 3.4 and Figure 3.5 show the locations of which models best fit the data based on AIC 

and BIC, respectively. No spatial patterns are evident based on the location of the best-fit 

stationary models. 

 

a)  b)  

c)  
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Figure 3.4 Best-fit distribution model, based on the AIC measure 

 
Figure 3.5  Best-fit distribution model, based on the BIC measure 
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3.3.4 Linking rainfall to flow  

Figure 3.6 depicts the time series for annual maximum streamflow and annual maximum 

rainfall for stations along the East Coast of KwaZulu-Natal. Figure 3.6 (b, c, d, e, and h) show 

the stations that have a relation between streamflow and rainfall. However, Figure 3.6 (a, f, g, 

and h) depict the stations (U2H003, W3H008,W4H003, and W3H015) that could not be used 

for further analysis as there was no correlation between streamflow and rainfall. This could be 

for a number of reasons, not limited to the location of the raingauges within the catchments, 

antecedent soil water conditions, and land use change. These stations had more than 20% of 

the AMS data exceeding the rating table and therefore, did not meet the screening method 

described in Section 3.2.2 and were discarded from further analyses. 

 

Table 3.6 contains a summary of the best-fit models for the stationary and non-stationary cases 

based on AIC and BIC measures. The non-stationary models considering time and rainfall as 

covariates were compared to the stationary models for each station. The detailed results are 

presented in Table 8.1 in Appendix B. The non-stationary models perform better than the 

stationary models at 100% and 80% of stations based on the AIC and BIC measures, 

respectively. Non-stationary model with rainfall as covariate performed better than time as a 

covariate at 60% of the stations based on AIC, but performed similarly at 40% of the stations 

with respect to BIC.  

 

The results of this study indicate that the best model of non-stationarity includes rainfall as a 

covariate. The same conclusion was established by Hesarkazzazi et al. (2021) for floods in the 

northwest of England.   

 

Figure 3.7 and Figure 3.8 show the locations of which models best fit the data based on AIC 

and BIC, respectively, for those flow stations that are linked to a rainfall station. No spatial 

patterns are evident based on the location of the best-fit models. 
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Table 3.6 Summary of best-fit models for all stationary and non-stationary cases  

AIC BIC 
Model Number of best-fit 

models 
Model Number of best-fit 

models 
Stationary  0 (0 %) Stationary  1(20 %) 
Non-stationary – Time 2(40 %) Non-stationary – Time 2 (40 %) 
Non-stationary – Rainfall 3 (60 %) Non-stationary – Rainfall 2 (40 %) 
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a)

 

b)

 

c)

 

d)

 

e)

 

f)
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g)

 

h)

 

i) 

 

Figure 3.6 Time series for annual maximum streamflow and rainfall stations in the 

East Coast of KwaZulu-Natal
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Figure 3.7  Best-fit distribution model, based on the AIC measure for flow stations linked 

with a rainfall station 

 

Figure 3.8  Best-fit distribution model, based on the BIC measure for flow stations linked 

with a rainfall station 
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3.4 Conclusions 

 

DFE is vital to ensure adequate design and flood rsik assessment of hydraulic structures and to 

minimise failure due to floods. However, as with rainfall, the current methods used to estimate 

design floods using streamflow data assume that hydrological conditions remain stationary over 

time. Studies reported in the literature are challenging this assumption as the frequency and 

magnitude of extremes are reported to be increasing as consequence of anthropogenic factors such 

as land use and climate change. Despite advances reported in the international literature, no studies 

from South Africa have reported the use of non-stationary models in DFE.  

The accuracy of the DFE is based on the quality of data used. This chapter details the criteria used 

to screen and select stations for use in this study and the methodology adopted to determine trends 

in hydrological extremes of streamflow data. The study area had a total of approximately 90 stations 

with flow data up to the year 2023 which are available from the DWS website. After screening the 

data and performing a homogeneity test using the Pettit test, 14 stations were found suitable for 

further analysis. 

The 14 streamflow stations with record lengths of at least 40 years were analysed to detect trends in 

the occurrences of extreme floods.  Trends in annual maximum streamflow data were analysed using 

the non-parametric Man-Kendall Test. The results showed that approximately 79% of the analysed 

stations in the East Coast of KwaZulu-Natal had negative trends with approximately 18% of the 

negative trends being significant (p < 0.05). Only one station (W4H012) out of the 14 showed a 

significant increase in the trend of annual maximum streamflow.  

 

Flood frequency analysis was performed using both stationary and non-stationary models using time 

and rainfall as covariates. The graphical approach between the different models was similar because 

the models could not accurately model the high flows for all return periods. This may be attributed 

to the model failing to model potential outlier events. For non-stationary analysis, the skewness can 

be varied as a function of a covariate which may be used to improve the simulation in future studies.  

 

The non-stationary analysis was also able to determine the changes in magnitude of floods 

associated with a particular return period. The results also show that the stationary models are 
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superior to non-stationary models at most stations with time as a covariate when using the model 

diagnostic and selection methods such as AIC, BIC and RMSE. At selected stations where flow was 

linked with rainfall, the non-stationary model with rainfall as a covariate performed better than both 

the stationary model and non-stationary model with time as a covariate. Therefore, further research 

of trends at other sites in the country located in various climate zones is recommended with rainfall 

being used as a covariate. Other recommendations include varying the other parameters of the 

probability distribution as a function of rainfall, especially the skewness as the LP3 disrtirbution.  

 
Regional magnification factors both at site and at regional level were not pursued further in this 

study as regional magnification factors are dependent on the general direction of the trend of the 

observed data. Since approximately 79% of the stations analysed in this study showed a negative 

trend, the magnification factors that would be calculated would results in a decrease in the DFE as 

these factors would be lower than one. It is recommended that future research investigate the causes 

of the negative trends in the annual maximum flow data, and more in-depth investigation into trends 

in the flow which may not be evident in the annual maximum flow data. 
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4. DISCUSSIONS, CONCLUSIONS AND RECOMMENDATIONS 

The ability to reliably estimate the expected magnitude and frequency of extreme rainfall and flood 

events is fundamental for improving design concepts and risk assessment methods. This is 

particularly important for extreme events that have significant impacts on society, infrastructure, 

and human lives, such as extreme precipitation events causing flooding and landslides. 

 

The assumption that hydrological processes remain stationary is still applied for DFE in South 

Africa. However, several studies have challenged this assumption as the hydrological conditions 

change due to anthropogenic factors such as climate change, land cover changes, and land use 

changes. This project aimed to contribute new knowledge on a method to account for non-stationary 

data, which incorporates the impacts of a changing climate in extreme design rainfall and flood 

estimates in South Africa. Therefore, the pilot undertaken in this study focussed on investigating 

trends in extreme rainfall and floods, incorporating non-stationarity in frequency analysis on annual 

maximum rainfall and streamflow data, and investigating the use of magnification factors to account 

for trends in varying hydrological conditions.  

 

The results of the trend analysis of rainfall data show weak evidence that the annual maximum daily 

rainfalls in the study region have been increasing in magnitude over time. In addition, non-stationary 

analysis of rainfall considering various climate drivers as covariates show that most rainfall records 

exhibit a stationary behaviour. Results of the analysis of annual maximum streamflow show 

decreasing trends in magnitude and frequency at the majority of stations. As with rainfall, at most 

streamflow stations, the stationary models are superior to the non-stationary models when 

considering changes over time. However, non-stationary models considering rainfall as a covariate 

were found to often be superior to the corresponding stationary models. Despite the majority of the 

stations showing an insignificant negative trend, the presence of the trend can be used to challenge 

the assumption of stationarity. 

 

The outcomes presented in this report are sometimes contrary to the outputs from GCMs reported 

in international studies, and to reported increases in extreme events in South Africa. This may be 

due to the limited study area, the limited spatial density and record length of stations, the selected 
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duration of events, and high upstream abstraction of streamflow that cannot be accounted for when 

performing extreme value analysis. The results may differ in other parts of the country and further 

analysis on a national scale covering different climatic zones is recommended. Furthermore, the 

sampling uncertainty of projections from GCMs used to investigate potential future changes in 

extreme events should be investigated.  

 

The annual maximum series approach, which is widely adopted in rainfall frequency analyses, was 

used in this study. This approach has the limitation that only the highest event is used per year and 

thus, other large events within the same year are not captured in the analyses. However, using a 

peaks-over-threshold (POT) approach is an alternative to the annual maxima approach, which can 

be used to represent the behaviour of exceedances above a selected threshold. A POT approach 

offers the opportunity to include more observations in the dataset and hence, more flexibility when 

compared to the use of only annual maxima (Pan et al., 2022). It is recommended that the POT 

approach be investigated for detecting non-stationarity in extreme rainfall data in South Africa in 

future studies. 

 

The identification and analysis of climate drivers of extreme events is vital to understanding the 

trends of the driving mechanisms of extreme rainfalls and floods. The results of the non-stationary 

analysis can be improved by investigating the use of other physical covariates or climate drivers, 

e.g., large weather systems such as Cut-off Lows, as well as combinations of covariates. Rainfall 

was incorporated in the non-stationary streamflow models as a covariate. However, to link specific 

rainfall and flood events, rainfall and streamflow should be linked through a hydrological model, 

e.g. rainfall-runoff model, in future research. Furthermore, catchment rainfall, time of concentration, 

and flood peaks should be considered in non-stationary rainfall-runoff relationships in future 

research. 

 

This study analysed the 1-day rainfall and flood events. However, in KZN coastal areas extremes 

are often associated with multi-day events. Furthermore, extreme events in other parts of the country 

may be driven by shorter, more intense events occurring within a single day. Therefore, the non-

stationary analysis of short duration (< 24h) and multi-day extreme event data is recommended for 

future research. Given the genrally negative trends in annual maximum flood data, it is 
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recommended that future research investigate the causes of the negative trends in the annual 

maximum flow data, and more in-depth investigation into trends in the flow which may not be  

evident in the annual maximum flow data. 

 

Regional magnification factors were not investigated further in this study as the majority of the 

stations within the study area showed a negative trend, which would mean the application of a 

regional magnification factor would result in a reduction of the design floods estimated using non-

stationary-based methods. However, it is recommended that further investigation into the use of 

regional magnification factors in other parts of South Africa should be undertaken.  

 

 

 

 

  



   

 

84 

 

5. CAPACITY BUILDING 
The students involved in the project and their roles are summarised in Table 5.1 

 

Table 5.1: List of students involved in the project 

Name Degree Role Comment 

Ms KA Johnson PhD Engineering Project leader,  

PhD Candidate 

 

 

Completed research 

towards doctoral 

degree with PhD 

Submitted in 

December 2023. 

Mr DV Mukansi PhD Engineering PhD Candidate 

 

 

Continuing with 

doctoral degree with 

intention to submit in 

2025. 

Mr MS Nyathi BSc Engineering 

(Civil) 

Undergraduate 

student 

 

Completed degree 

and final year 

research dissertation 

project in 2022. 

Mr N Singh BSc Engineering 

(Civil) 

Undergraduate 

student 

 

 

Completed final year 

research dissertation 

project in 2022. 

 

This research has been shared at the South African Hydrological Society Conference in October 

2022 and at the International Association of Hydrological Sciences Assembly in Germany in July 

2023, and presented at the annual NFSP workshop in May 2024 at Stellenbosch University. These 

events were attended by practitioners, stakeholders and academic researchers. 
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7. APPENDIX A: Non-stationary Frequency Analysis of Extreme Rainfalls in 

KwaZulu-Natal 
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Figure 7.1 Time series of all annual maximum rainfalls at all SASRI stations used in this research 
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Table 7.1 The GEV statistical model performance criteria of KwaZulu-Natal AMDR for all covariates 
Station Stationary Time SOI DMI CO2 GMT 

 
AIC BIC RMSE AIC BIC RMSE AIC BIC RMSE AIC BIC RMSE AIC BIC RMSE AIC BIC RMSE 

6 460.81* 466.49* 1.62 462.90 474.25 1.29 466.03 477.38 1.99 467.20 478.55 1.29 462.24 473.59 1.80 464.75 476.10 2.19 

8 558.34* 564.36* 1.55 562.22 574.27 1.27 564.37 576.41 1.72 565.59 577.63 1.95 563.35 575.40 1.48 568.60 580.65 2.76 

9 575.74* 581.70* 1.82 579.30 591.24 1.60 581.04 592.97 2.18 578.66 590.59 2.87 578.19 590.13 1.55 582.89 594.83 2.07 

11 580.81* 586.83* 1.32 587.07 599.11 1.41 588.62 600.67 0.81 588.92 600.96 2.03 587.58 599.63 1.31 591.74 603.79 2.19 

12 524.07* 529.98* 2.01 530.18 542.00 2.18 528.74 540.56 2.26 531.72 543.54 2.54 530.49 542.31 1.99 532.85 544.67 3.09 

18 538.31* 544.27* 1.24 542.06 553.99 1.63 543.78 555.71 1.70 545.74 557.68 1.39 543.40 555.34 0.69 543.70 555.64 1.32 

20 549.95* 555.97* 1.24 553.22 565.27 1.66 552.50 564.55 1.35 557.23 569.28 2.11 555.74 567.79 1.25 557.10 569.14 1.33 

22 493.72* 499.74* 4.30 495.97 508.02 3.57 493.85 505.89 3.47 498.92 510.96 4.52 498.78 510.82 5.28 503.65 515.69 3.39 

23 433.83* 439.57* 2.60 440.31 451.78 2.73 440.62 452.09 2.55 441.10 452.57 3.89 439.35 450.83 1.89 440.19 451.66 3.48 

26 531.30* 537.10* 1.76 536.26 547.85 1.35 534.84 546.43 1.96 537.86 549.45 1.85 535.87 547.47 1.45 538.18 549.77 1.61 

27 504.05* 509.60* 1.88 508.19 519.30 1.58 508.46 519.56 2.44 512.28 523.38 2.82 508.10 519.20 1.89 511.83 522.93 1.81 

29 954.38 961.98 1.45 956.19 971.39 1.16 958.87 974.07 1.60 959.00 974.19 1.42 643.43* 656.10* 1.50 961.56 976.75 1.38 

38 449.01 454.36* 1.79 447.38* 456.30 1.71 461.64 472.48 1.85 463.70 474.54 1.66 458.18 469.02 1.85 459.78 470.62 1.32 

105 597.12* 603.20* 1.22 600.91 613.06 0.99 604.05 616.20 1.61 603.70 615.86 0.91 600.57 612.72 1.21 605.83 617.98 0.91 

110 678.80 685.27 1.18 681.18 694.14 0.97 683.75 696.70 1.71 683.33 696.28 1.14 650.71* 663.37* 1.08 683.65 696.60 1.10 

111 650.68* 657.16* 1.71 654.17 667.12 1.47 655.94 668.89 1.49 657.11 670.06 2.04 650.80 663.46 1.29 656.77 669.73 2.39 

114 654.36* 660.84 1.68 660.62 673.57 1.49 658.41 669.20 1.75 662.80 675.75 2.06 633.35* 646.01* 1.70 662.84 675.80 1.99 

120 638.31* 644.73 1.12 641.61 654.47 0.97 640.56 653.42 1.97 644.34 657.20 1.54 612.32* 624.89* 1.25 644.00 656.86 1.82 

123 644.55 651.02 1.53 649.04 662.00 1.39 642.21* 655.17 1.41 651.48 664.43 1.58 618.31* 630.98* 1.32 650.09 663.05 1.57 

125 646.42 652.90 1.87 647.89 660.84 2.15 647.01 659.96 1.66 650.52 663.48 1.87 620.45* 633.11* 1.49 649.62 662.57 1.53 

126 650.56 657.04 1.75 655.20 668.15 1.57 656.14 669.09 1.93 657.72 670.67 2.10 626.12* 638.78* 2.00 658.26 671.21 2.70 
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Station Stationary Time SOI DMI CO2 GMT 
 

AIC BIC RMSE AIC BIC RMSE AIC BIC RMSE AIC BIC RMSE AIC BIC RMSE AIC BIC RMSE 

129 624.55 631.03 2.60 627.67 640.62 2.11 622.30* 635.25 1.66 631.82 644.77 2.37 600.28* 612.94* 2.06 630.02 642.97 2.21 

130 633.31 639.74 1.45 639.00 651.86 1.15 628.60* 641.46 1.39 641.77 654.62 2.33 611.81* 624.38* 0.97 641.73 654.59 1.63 

131 644.40 650.87 1.62 650.88 663.84 1.88 650.17 663.12 1.75 642.24* 655.19 2.44 621.77* 634.43* 1.92 653.09 666.04 2.61 

132 582.99* 589.23 1.38 587.49* 599.96 0.96 589.90 602.36 1.06 592.20 604.67 0.83 559.93* 572.08* 0.99 588.75 601.21 1.46 

136 449.30 454.65 5.50 441.49* 450.41* 4.77 451.62 462.33 4.52 457.21 467.91 6.41 445.74* 456.45 4.92 449.28 459.98 6.54 

138 669.56 676.04 3.14 663.81 674.60 2.37 677.33 690.28 3.75 679.25 692.20 2.71 633.86 646.53* 2.44 669.05 682.00 2.74 

139 655.28* 661.76 1.53 658.52 671.47 1.26 659.45 672.41 1.19 663.34 676.29 1.30 629.94 642.60* 1.54 661.57 674.52 1.22 

142 649.98* 656.46 1.43 653.17 666.12 1.03 655.72 668.68 1.65 656.72 669.67 1.73 626.53 639.19* 1.14 654.73 667.69 2.10 

143 639.43* 645.91 1.86 644.96 657.91 1.61 645.66 658.62 2.57 646.46 659.41 2.48 617.40 630.07* 1.64 649.00 661.96 1.43 

144 658.45 664.92 1.53 662.85 675.80 1.41 665.18 678.13 1.15 664.23 677.19 1.39 633.52* 646.18* 1.67 666.58 679.54 1.29 

146 674.01 680.48 1.63 679.81 692.77 1.53 674.94 687.90 1.56 679.88 692.83 1.71 650.45* 663.11* 1.54 681.38 694.34 1.73 

147 672.21 678.69 1.42 677.51 690.46 2.02 676.90 689.86 2.11 679.51 692.47 1.83 647.37* 660.03* 0.97 678.23 691.18 1.52 

148 658.21* 664.68 1.61 664.53 677.49 1.64 665.19 678.15 1.37 665.33 678.29 1.87 635.96 648.63* 1.15 668.46 681.41 2.32 

149 656.35* 662.82 2.01 664.71 677.66 2.00 661.89 674.84 2.43 663.86 676.81 1.94 632.88 645.55* 1.88 666.08 679.03 1.90 

151 639.67* 645.90 3.13 645.48 657.94 2.83 646.86 659.32 3.32 641.45 653.91 3.53 616.16 628.31* 2.22 648.76 661.23 4.23 

152 578.80 585.03 2.13 578.77 591.24 1.31 583.30 595.76 2.11 588.86 601.33 3.06 546.38 558.53* 1.62 578.97 591.44 3.86 

154 612.12 618.59 2.37 617.67 630.62 1.14 615.03 627.98 2.03 618.64 631.59 2.38 590.86* 603.53* 2.42 621.78 634.73 3.37 

155 615.82 622.30 2.09 618.61 631.57 2.37 615.63* 628.58 2.16 617.83 630.79 2.07 591.24* 603.90* 1.38 621.73 634.68 3.17 

*Best-fit model based on AIC and BIC 
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Figure 7.2 The GEV (a) stationary model, (b) non-stationary model considering time as a covariate, 
(c) non-stationary model considering SOI as a covariate, (d) non-stationary model 
considering DMI as a covariate, (e) non-stationary model considering CO2 as a covariate, 
(f) non-stationary model considering GMT as a covariate and (g) effective return period as 
a function of time for Station 6: Pongola – SASRI 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.3 The GEV (a) stationary model, (b) non-stationary model considering time as a covariate, 
(c) non-stationary model considering SOI as a covariate, (d) non-stationary model 
considering DMI as a covariate, (e) non-stationary model considering CO2 as a covariate, 
(f) non-stationary model considering GMT as a covariate and (g) effective return period as 
a function of time for Station 8: Glen Park – St Lucia Farms 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.4 The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 9: Mtubatuba – Riverview Sugar Mill 

a)  b)  

c)  d)  

e)  f)  

a)  
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Figure 7.5 The GEV (a) stationary model, (b) non-stationary model considering time as a covariate, 
(c) non-stationary model considering SOI as a covariate, (d) non-stationary model 
considering DMI as a covariate, (e) non-stationary model considering CO2 as a covariate, 
(f) non-stationary model considering GMT as a covariate and (g) effective return period as 
a function of time for Station 11: Mtunzini – ex SASRI 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.6 The GEV (a) stationary model, (b) non-stationary model considering time as a covariate, 
(c) non-stationary model considering SOI as a covariate, (d) non-stationary model 
considering DMI as a covariate, (e) non-stationary model considering CO2 as a covariate, 
(f) non-stationary model considering GMT as a covariate and (g) effective return period as 
a function of time for Station 12: Melmoth – CA Leith & Sons 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.7 The GEV (a) stationary model, (b) non-stationary model considering time as a covariate, 
(c) non-stationary model considering SOI as a covariate, (d) non-stationary model 
considering DMI as a covariate, (e) non-stationary model considering CO2 as a covariate, 
(f) non-stationary model considering GMT as a covariate and (g) effective return period as 
a function of time for Station 18: Glendale – Tenrith Farm 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.8 The GEV (a) stationary model, (b) non-stationary model considering time as a covariate, 
(c) non-stationary model considering SOI as a covariate, (d) non-stationary model 
considering DMI as a covariate, (e) non-stationary model considering CO2 as a covariate, 
(f) non-stationary model considering GMT as a covariate and (g) effective return period as 
a function of time for Station 20: Tongaat – Klipfontein (THS) 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.9 The GEV (a) stationary model, (b) non-stationary model considering time as a covariate, 
(c) non-stationary model considering SOI as a covariate, (d) non-stationary model 
considering DMI as a covariate, (e) non-stationary model considering CO2 as a covariate, 
(f) non-stationary model considering GMT as a covariate and (g) effective return period as 
a function of time for Station 22: Seven Oaks – Saw Mill 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.10  The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 23: Noodsberg – Illovo Sugar Mill 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.11  The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 26: Illovo – Sugar Estate 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.12  The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 27: Vulamehlo – Esperanza 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.13  The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 29: Mt Edgecombe – SASRI 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.14  The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 38: Sezela – Illovo Sugar Estate 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.15  The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 105: Oribi Flats – Minnehaha Farm 

a)  b)  

c)  
d)  

e)  f)  

g)  
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Figure 7.16  The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 110: Renishaw – Crooks Bros Estate 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.17  The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 111: Powerscourt – Roseleigh Estate 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.18  The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 114: Inanda – Farm 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.19  The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 120: Inyaninga – THS 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.20  The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 123: Maidstone – Sugar Mill (THS) 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.21  The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 125: Sinembe – Spreyton Farm 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.22  The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 126: Upper Tongaat – Barwon Farm 

a)  b)  

c)  d)  

e)  f)  

g)  

 



 

121 

 

Figure 7.23  The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 129: Kearsney – Ocean Lodge 

 

a)  b)  

c)  d)  

e)  f)  

g)  
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Figure 7.24  The GEV (a) stationary model, (b) non-stationary model considering time as a 
covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 130: Doornkop – Langespruit Farm 

a)  b)  

c)  d)  

e)  f)  

g)  
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a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.25  The GEV (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 131: Darnall – Sugar Mill (THS) 
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a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.26  The GEV (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 132: Tugela Mouth – Wetherly Estate 
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a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.27  The GEV (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 136: Glenside – Misty Krantz Estate 
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a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.28  The GEV (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 138: Mandini – SAWS 
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a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.29  The GEV (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 139: Inyoni – Myrln Estate 
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a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.30  The GEV (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 142: Eshowe – Brocklee Farm 
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a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.31  The GEV (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 143: Nkwaleni – Zigagazi 
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a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.32  The GEV (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 144: Felixton – Sugar Mill (THS) 
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a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.33  The GEV (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 146: Kulu Halt – Honey Farm 
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a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.34  The GEV (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 147: Ukulu Properties – Crystal Holdings 
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a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.35 The GEV (a) stationary model, (b) non-stationary model considering time as a covariate, 

(c) non-stationary model considering SOI as a covariate, (d) non-stationary model 
considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 148: Mposa – Redcroft Farm 
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 a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.36  The GEV (a) stationary model, (b) non-stationary model considering time as a covariate, 

(c) non-stationary model considering SOI as a covariate, (d) non-stationary model 
considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 149: Kwambonambi – Mondi Forestry 
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a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.37  The GEV (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 151: ULOA – Mark & Ross Sugar Estate 



 

136 

 

a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.38  The GEV (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 152: Mtubatuba – Nyalazi River 
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a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.39 The GEV (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 154: Mkuze – Mkuze Estate  
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a)  b)  

c)  d)  

e)  f)  

g)  
Figure 7.40  The GEV (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering SOI as a covariate, (d) non-stationary 
model considering DMI as a covariate, (e) non-stationary model considering CO2 as a 
covariate, (f) non-stationary model considering GMT as a covariate and (g) effective 
return period as a function of time for Station 155: Pongola – Impala Irrigation Board 
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Figure 7.41 Time series of annual maximum rainfall for SASRI station 6 and 6 GCMs 

for corresponding years  

 

 

Figure 7.42 Time series of annual maximum rainfall for SASRI station 8 and 6 GCMs 

for corresponding years 

 

Figure 7.43 Time series of annual maximum rainfall for SASRI station 9 and 6 GCMs for 

corresponding years 
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Figure 7.44 Time series of annual maximum rainfall for SASRI station 11 and 6 GCMs for 

corresponding years 

 

Figure 7.45 Time series of annual maximum rainfall for SASRI station 12 and 6 GCMs for 

corresponding years 

 

Figure 7.46 Time series of annual maximum rainfall for SASRI station 18 and 6 GCMs for 

corresponding years 
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Figure 7.47 Time series of annual maximum rainfall for SASRI station 20 and 6 GCMs for 

corresponding years 

 

Figure 7.48 Time series of annual maximum rainfall for SASRI station 22 and 6 GCMs for 

corresponding years 

 

Figure 7.49 Time series of annual maximum rainfall for SASRI station 23 and 6 GCMs for 

corresponding years 
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Figure 7.50 Time series of annual maximum rainfall for SASRI station 26 and 6 GCMs for 

corresponding years 

 

Figure 7.51 Time series of annual maximum rainfall for SASRI station 27 and 6 GCMs for 

corresponding years 

 

Figure 7.52 Time series of annual maximum rainfall for SASRI station 29 and 6 GCMs for 

corresponding years 
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Figure 7.53 Time series of annual maximum rainfall for SASRI station 38 and 6 GCMs for 

corresponding years 

 

Figure 7.54 Time series of annual maximum rainfall for SASRI station 105 and 6 GCMs for 

corresponding years 

 

Figure 7.55 Time series of annual maximum rainfall for SASRI station 110 and 6 GCMs for 

corresponding years 
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Figure 7.56 Time series of annual maximum rainfall for SASRI station 111 and 6 GCMs for 

corresponding years 

 

Figure 7.57 Time series of annual maximum rainfall for SASRI station 114 and 6 GCMs for 

corresponding years 

 

Figure 7.58 Time series of annual maximum rainfall for SASRI station 120 and 6 GCMs for 

corresponding years 
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Figure 7.59 Time series of annual maximum rainfall for SASRI station 123 and 6 GCMs for 

corresponding years 

 

Figure 7.60 Time series of annual maximum rainfall for SASRI station 125 and 6 GCMs for 

corresponding years 

 

Figure 7.61 Time series of annual maximum rainfall for SASRI station 126 and 6 GCMs for 

corresponding years 
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Figure 7.62 Time series of annual maximum rainfall for SASRI station 129 and 6 GCMs for 

corresponding years 

 

Figure 7.63 Time series of annual maximum rainfall for SASRI station 130 and 6 GCMs for 

corresponding years 

 

Figure 7.64 Time series of annual maximum rainfall for SASRI station 131 and 6 GCMs for 

corresponding years 
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Figure 7.65 Time series of annual maximum rainfall for SASRI station 132 and 6 GCMs for 

corresponding years 

 

Figure 7.66 Time series of annual maximum rainfall for SASRI station 136 and 6 GCMs for 

corresponding years 

 

Figure 7.67 Time series of annual maximum rainfall for SASRI station 138 and 6 GCMs for 

corresponding years 
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Figure 7.68 Time series of annual maximum rainfall for SASRI station 139 and 6 GCMs for 

corresponding years 

 

 

Figure 7.69 Time series of annual maximum rainfall for SASRI station 142 and 6 GCMs for 

corresponding years 

 

Figure 7.70 Time series of annual maximum rainfall for SASRI station 143 and 6 GCMs for 

corresponding years 

 



 

149 

 

 

Figure 7.71 Time series of annual maximum rainfall for SASRI station 146 and 6 GCMs for 

corresponding years 

 

Figure 7.72  Time series of annual maximum rainfall for SASRI station 144 and 6 GCMs for 

corresponding years 

 

Figure 7.73 Time series of annual maximum rainfall for SASRI station 147 and 6 GCMs for 

corresponding years 

 



 

150 

 

 

Figure 7.74 Time series of annual maximum rainfall for SASRI station 148 and 6 GCMs for 

corresponding years 

 

Figure 7.75 Time series of annual maximum rainfall for SASRI station 149 and 6 GCMs for 

corresponding years 

 

Figure 7.76 Time series of annual maximum rainfall for SASRI station 151 and 6 GCMs for 

corresponding years 
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Figure 7.77 Time series of annual maximum rainfall for SASRI station 152 and 6 GCMs for 

corresponding years 

 

Figure 7.78 Time series of annual maximum rainfall for SASRI station 154 and 6 GCMs for 

corresponding years 

 

Figure 7.79 Time series of annual maximum rainfall for SASRI station 155 and 6 GCMs for 

corresponding years
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Figure 7.80 Projected changes from the present to the near future in design rainfalls for the 1-day 2-year Return Period derived from outputs from 

multiple GCMs 
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Figure 7.81 Projected changes from the present to the distant future in design rainfalls for the 1-day 2-year Return Period derived from outputs 

from multiple GCMs 
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Figure 7.82 Projected changes from the present to the near future in design rainfalls for the 1-day 10-year Return Period derived from outputs 

from multiple GCMs 
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Figure 7.83 Projected changes from the present to the distant future in design rainfalls for the 1-day 10-year Return Period derived from outputs 

from multiple GCMs 
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Figure 7.84 Projected changes from the present to the near future in design rainfalls for the 1-day 50-year Return Period derived from outputs 

from multiple GCMs 
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Figure 7.85 Projected changes from the present to the distant future in design rainfalls for the 1-day 50-year Return Period derived from outputs 

from multiple GCMs 
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Figure 7.86 Projected changes from the present to the near future in design rainfalls for the 1-day 100-year Return Period derived from outputs 

from multiple GCMs 
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Figure 7.87 Projected changes from the present to the distant future in design rainfalls for the 1-day 100-year Return Period derived from outputs 

from multiple GCMs 
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8. APPENDIX B: Non-stationary Frequency Analysis of Extreme Floods 

in KwaZulu-Natal 
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a)  b)  

c)  d)  

e)  f)  

g)  h)  
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i)      j)  

k)  l)  

m)  n)    

Figure 8.1 Time series of annual streamflows at stations along the East Coast of 

KwaZulu-Natal  

 

 

 

 

 



   

 

163 

 

a)  b)  

c)  

Figure 8.2 The LP3 (a) stationary model, (b) non-stationary model considering time as 

a covariate, and (c) effective return period as a function of time for Station: 

T5H012 
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a)   b)   

c)  

Figure 8.3 LP3 (a) stationary model, (b) non-stationary model considering time as a 

covariate, and (c) effective return period as a function of time for Station: 

U2H001 
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a)  b)  

c)  

Figure 8.4 LP3 (a) stationary model, (b) non-stationary model considering time as a 

covariate, and (c) effective return period as a function of time for Station: 

U2H006 
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a)  b)  

c)  

Figure 8.5 LP3 (a) stationary model, (b) non-stationary model considering time as a 

covariate, and (c) effective return period as a function of time for Station: 

U2H048 
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a)  b)  

c)  d)  

Figure 8.6 LP3 (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering rainfall as a covariate, and 

(d) effective return period as a function of time for Station:U3H001 
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a)   b)  

c)  d)  

Figure 8.7 LP3 (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering rainfall as a covariate, and 

(d) effective return period as a function of time for Station:U3H005 
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a)  

 

b)   

c)  

Figure 8.8 LP3 (a) stationary model, (b) non-stationary model considering time as a 

covariate, and (c) effective return period as a function of time for Station: 

U4H002 
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a)  b)   

c)  

Figure 8.9 LP3 (a) stationary model, (b) non-stationary model considering time as a 

covariate, and (c) effective return period as a function of time for Station: 

U6H003 
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a)   b)  

c)  d)  

Figure 8.10 LP3 (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering rainfall as a covariate, and 

(d) effective return period as a function of time for Station:V5H002 
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a)  b)   

c)  

Figure 8.11 LP3 (a) stationary model, (b) non-stationary model considering time as a 

covariate, and (c) effective return period as a function of time for Station: 

W1H004 
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a)    b)  

c)  d)  

Figure 8.12 LP3 (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering rainfall as a covariate, and 

(d) effective return period as a function of time for Station:W1H009 
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a)  b)   

c)  

Figure 8.13 LP3 (a) stationary model, (b) non-stationary model considering time as a 

covariate, and (c) effective return period as a function of time for Station: 

W2H005 
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a)  b)   

c)  

Figure 8.14 LP3 (a) stationary model, (b) non-stationary model considering time as a 

covariate, and (c) effective return period as a function of time for Station: 

W3H022 
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a)  

  

b)  

c)  d)  

Figure 8.15 LP3 (a) stationary model, (b) non-stationary model considering time as a 

covariate, (c) non-stationary model considering rainfall as a covariate, and 

(d) effective return period as a function of time for Station:W4H012 
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Table 8.1 The LP3 statistical model performance criteria for all covariates 

Station 
Number 

Stationary Non-Stationary Time Non-Stationary Rainfall  

AIC BIC RMSE AIC BIC RMSE AIC BIC RMSE 

U3H001 107.06 112.16* 19.71 106.37* 113.12 15.17* 107.83 114.59 20.74 
U3H005 176.15 181.37 9782.30 168.51 175.45 404.24 167.43* 174.27* 27.42* 
V5H002 122.90 128.58 29.43 108.19* 115.76* 11.72* 124.78 132.35 22.34 

W1H009 168.59 174.44 32.37 164.98 172.80 25.28* 163.32* 171.12* 641.57 

W4H012 19.89 26.28 22.27* -78.60* -70.09* 32.32 21.39 29.87 23.42 
*Better performing model  
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